|
1 |
/*
|
|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
|
3 |
Copyright (C) 2016..2019 Thomas Schöpping et al.
|
|
4 |
|
|
5 |
This program is free software: you can redistribute it and/or modify
|
|
6 |
it under the terms of the GNU General Public License as published by
|
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
|
8 |
(at your option) any later version.
|
|
9 |
|
|
10 |
This program is distributed in the hope that it will be useful,
|
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13 |
GNU General Public License for more details.
|
|
14 |
|
|
15 |
You should have received a copy of the GNU General Public License
|
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17 |
*/
|
|
18 |
|
|
19 |
#include <amiroos.h>
|
|
20 |
|
|
21 |
#if ((AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1)) || defined(__DOXYGEN__)
|
|
22 |
|
|
23 |
#include <aos_debug.h>
|
|
24 |
#include <chprintf.h>
|
|
25 |
#include <aos_thread.h>
|
|
26 |
#include <math.h>
|
|
27 |
#include <module.h>
|
|
28 |
#include <alld_DW1000.h>
|
|
29 |
#include <v1/deca_instance_v1.h>
|
|
30 |
|
|
31 |
|
|
32 |
/******************************************************************************/
|
|
33 |
/* LOCAL DEFINITIONS */
|
|
34 |
/******************************************************************************/
|
|
35 |
|
|
36 |
//#define UNIT_TEST_SNIPPETS_DW1000 // switch between unit test and demo apps
|
|
37 |
|
|
38 |
#define SWS1_SHF_MODE 0x02 //short frame mode (6.81M)
|
|
39 |
#define SWS1_CH5_MODE 0x04 //channel 5 mode
|
|
40 |
#define SWS1_ANC_MODE 0x08 //anchor mode
|
|
41 |
#define SWS1_A1A_MODE 0x10 //anchor/tag address A1
|
|
42 |
#define SWS1_A2A_MODE 0x20 //anchor/tag address A2
|
|
43 |
#define SWS1_A3A_MODE 0x40 //anchor/tag address A3
|
|
44 |
#define SWS1_USB2SPI_MODE 0x78 //USB to SPI mode
|
|
45 |
|
|
46 |
#define S1_SWITCH_ON (1)
|
|
47 |
#define S1_SWITCH_OFF (0)
|
|
48 |
|
|
49 |
/******************************************************************************/
|
|
50 |
/* EXPORTED VARIABLES */
|
|
51 |
/******************************************************************************/
|
|
52 |
|
|
53 |
/******************************************************************************/
|
|
54 |
/* LOCAL TYPES */
|
|
55 |
/******************************************************************************/
|
|
56 |
|
|
57 |
/******************************************************************************/
|
|
58 |
/* LOCAL VARIABLES */
|
|
59 |
/******************************************************************************/
|
|
60 |
uint8_t s1switch = 0;
|
|
61 |
int instance_anchaddr = 0;
|
|
62 |
int dr_mode = 0;
|
|
63 |
int chan, tagaddr, ancaddr;
|
|
64 |
int instance_mode = ANCHOR;
|
|
65 |
|
|
66 |
DW1000Driver* spiDrv;
|
|
67 |
|
|
68 |
|
|
69 |
/******************************************************************************/
|
|
70 |
/* LOCAL FUNCTIONS */
|
|
71 |
/******************************************************************************/
|
|
72 |
|
|
73 |
/*! @brief Change the SPI speed configuration on the fly */
|
|
74 |
void setHighSpeed_SPI(bool speedValue){
|
|
75 |
|
|
76 |
spiStop(&MODULE_HAL_SPI_UWB);
|
|
77 |
// spiAcquireBus(&MODULE_HAL_SPI_UWB);
|
|
78 |
|
|
79 |
if (speedValue == FALSE){
|
|
80 |
spiStart(&MODULE_HAL_SPI_UWB, &moduleHalSpiUwbLsConfig); // low speed spi configuration
|
|
81 |
}
|
|
82 |
else{
|
|
83 |
spiStart(&MODULE_HAL_SPI_UWB, &moduleHalSpiUwbHsConfig); // high speed spi configuration
|
|
84 |
}
|
|
85 |
}
|
|
86 |
/* void setHighSpeed_SPI(bool speedValue){
|
|
87 |
|
|
88 |
spiStop(spiDrv->spid);
|
|
89 |
// spiAcquireBus(&MODULE_HAL_SPI_UWB);
|
|
90 |
|
|
91 |
if (speedValue == FALSE){
|
|
92 |
spiStart(spiDrv->spid, &moduleHalSpiUwbLsConfig); // low speed spi configuration
|
|
93 |
}
|
|
94 |
else{
|
|
95 |
spiStart(spiDrv->spid, &moduleHalSpiUwbHsConfig); // high speed spi configuration
|
|
96 |
}
|
|
97 |
} */
|
|
98 |
|
|
99 |
/*! @brief Manually set the chip select pin of the SPI */
|
|
100 |
void port_SPIx_set_chip_select(void){
|
|
101 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_HIGH);
|
|
102 |
}
|
|
103 |
|
|
104 |
/*! @brief Manually reset the chip select pin of the SPI */
|
|
105 |
void port_SPIx_clear_chip_select(void){
|
|
106 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_LOW);
|
|
107 |
}
|
|
108 |
|
|
109 |
/*! @brief Manually reset the DW1000 module */
|
|
110 |
void reset_DW1000(void){
|
|
111 |
|
|
112 |
// Set the pin as output
|
|
113 |
palSetPadMode(moduleGpioDw1000Reset.gpio->port, moduleGpioDw1000Reset.gpio->pad, APAL_GPIO_DIRECTION_OUTPUT);
|
|
114 |
|
|
115 |
//drive the RSTn pin low
|
|
116 |
apalGpioWrite(moduleGpioDw1000Reset.gpio, APAL_GPIO_LOW);
|
|
117 |
|
|
118 |
//put the pin back to tri-state ... as input
|
|
119 |
// palSetPadMode(moduleGpioDw1000Reset.gpio->port, moduleGpioDw1000Reset.gpio->pad, APAL_GPIO_DIRECTION_INPUT); // TODO:
|
|
120 |
|
|
121 |
aosThdMSleep(2);
|
|
122 |
}
|
|
123 |
|
|
124 |
|
|
125 |
/*! @brief Configure instance tag/anchor/etc... addresses
|
|
126 |
*
|
|
127 |
* */
|
|
128 |
void addressconfigure(uint8_t s1switch, uint8_t mode){
|
|
129 |
uint16_t instAddress ;
|
|
130 |
|
|
131 |
instance_anchaddr = (((s1switch & SWS1_A1A_MODE) << 2) + (s1switch & SWS1_A2A_MODE) + ((s1switch & SWS1_A3A_MODE) >> 2)) >> 4;
|
|
132 |
|
|
133 |
if(mode == ANCHOR) {
|
|
134 |
if(instance_anchaddr > 3) {
|
|
135 |
instAddress = GATEWAY_ANCHOR_ADDR | 0x4 ; //listener
|
|
136 |
}
|
|
137 |
else {
|
|
138 |
instAddress = GATEWAY_ANCHOR_ADDR | (uint16_t)instance_anchaddr;
|
|
139 |
}
|
|
140 |
}
|
|
141 |
else{
|
|
142 |
instAddress = (uint16_t)instance_anchaddr;
|
|
143 |
}
|
|
144 |
|
|
145 |
instancesetaddresses(instAddress);
|
|
146 |
}
|
|
147 |
|
|
148 |
|
|
149 |
/*! @brief returns the use case / operational mode
|
|
150 |
*
|
|
151 |
* */
|
|
152 |
int decarangingmode(uint8_t s1switch){
|
|
153 |
int mode = 0;
|
|
154 |
|
|
155 |
if(s1switch & SWS1_SHF_MODE) {
|
|
156 |
mode = 1;
|
|
157 |
}
|
|
158 |
|
|
159 |
if(s1switch & SWS1_CH5_MODE) {
|
|
160 |
mode = mode + 2;
|
|
161 |
}
|
|
162 |
|
|
163 |
return mode;
|
|
164 |
}
|
|
165 |
|
|
166 |
/*! @brief Check connection setting and initialize DW1000 module
|
|
167 |
*
|
|
168 |
**/
|
|
169 |
uint32_t inittestapplication(uint8_t s1switch){
|
|
170 |
uint32_t devID ;
|
|
171 |
int result;
|
|
172 |
|
|
173 |
setHighSpeed_SPI(FALSE); //low speed spi max. ~4M
|
|
174 |
devID = instancereaddeviceid() ;
|
|
175 |
|
|
176 |
if(DWT_DEVICE_ID != devID) {
|
|
177 |
port_SPIx_clear_chip_select();
|
|
178 |
Sleep(1);
|
|
179 |
port_SPIx_set_chip_select();
|
|
180 |
Sleep(7);
|
|
181 |
devID = instancereaddeviceid() ;
|
|
182 |
if(DWT_DEVICE_ID != devID){
|
|
183 |
return(-1) ; // SPI not working or Unsupported Device ID
|
|
184 |
}
|
|
185 |
dwt_softreset();//clear the sleep bit - so that after the hard reset below the DW does not go into sleep
|
|
186 |
}
|
|
187 |
|
|
188 |
reset_DW1000(); //reset the DW1000 by driving the RSTn line low
|
|
189 |
|
|
190 |
if((s1switch & SWS1_ANC_MODE) == 0){
|
|
191 |
instance_mode = TAG;
|
|
192 |
}
|
|
193 |
else{
|
|
194 |
instance_mode = ANCHOR;
|
|
195 |
}
|
|
196 |
|
|
197 |
result = instance_init(spiDrv) ; // TODO
|
|
198 |
// result = instance_init() ;
|
|
199 |
|
|
200 |
if (0 > result){
|
|
201 |
return(-1) ;
|
|
202 |
}
|
|
203 |
|
|
204 |
setHighSpeed_SPI(TRUE); // high speed spi max. ~ 20M
|
|
205 |
devID = instancereaddeviceid() ;
|
|
206 |
|
|
207 |
if (DWT_DEVICE_ID != devID){
|
|
208 |
return(-1) ;
|
|
209 |
}
|
|
210 |
|
|
211 |
addressconfigure(s1switch, (uint8_t)instance_mode) ;
|
|
212 |
|
|
213 |
if((instance_mode == ANCHOR) && (instance_anchaddr > 0x3)){
|
|
214 |
instance_mode = LISTENER;
|
|
215 |
}
|
|
216 |
|
|
217 |
instancesetrole(instance_mode) ; // Set this instance role
|
|
218 |
dr_mode = decarangingmode(s1switch);
|
|
219 |
chan = chConfig[dr_mode].channelNumber ;
|
|
220 |
instance_config(&chConfig[dr_mode], &sfConfig[dr_mode]) ;
|
|
221 |
|
|
222 |
return devID;
|
|
223 |
}
|
|
224 |
|
|
225 |
/*! @brief Main Entry point to Initialization of UWB DW1000 configuration
|
|
226 |
*
|
|
227 |
* */
|
|
228 |
#pragma GCC optimize ("O3")
|
|
229 |
int UWB_Init(void){
|
|
230 |
|
|
231 |
/*! Software defined Configurartion for TAG, ANC, and other settings as needed */
|
|
232 |
s1switch = S1_SWITCH_OFF << 1 // is_switch_on(TA_SW1_2) << 2 // (on = 6.8 Mbps, off = 110 kbps)
|
|
233 |
| S1_SWITCH_OFF << 2 // (on = CH5, off = CH2)
|
|
234 |
| S1_SWITCH_OFF << 3 // (on = Anchor, off = TAG)
|
|
235 |
| S1_SWITCH_OFF << 4 // (configure Tag or anchor ID no.)
|
|
236 |
| S1_SWITCH_OFF << 5 // (configure Tag or anchor ID no.)
|
|
237 |
| S1_SWITCH_OFF << 6 // (configure Tag or anchor ID no.)
|
|
238 |
| S1_SWITCH_OFF << 7; // Not use in this demo
|
|
239 |
|
|
240 |
|
|
241 |
port_DisableEXT_IRQ(); //disable ScenSor IRQ until we configure the device
|
|
242 |
|
|
243 |
if((s1switch & SWS1_USB2SPI_MODE) == SWS1_USB2SPI_MODE){
|
|
244 |
return 1;
|
|
245 |
}
|
|
246 |
else{
|
|
247 |
//run RTLS application
|
|
248 |
if(inittestapplication(s1switch) == (uint32_t)-1) {
|
|
249 |
return 0; //error
|
|
250 |
}
|
|
251 |
|
|
252 |
aosThdMSleep(5);
|
|
253 |
}
|
|
254 |
|
|
255 |
port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
|
|
256 |
|
|
257 |
return 0;
|
|
258 |
}
|
|
259 |
|
|
260 |
|
|
261 |
/******************************************************************************/
|
|
262 |
/* EXPORTED FUNCTIONS */
|
|
263 |
/******************************************************************************/
|
|
264 |
|
|
265 |
|
|
266 |
aos_utresult_t utAlldDw1000Func(BaseSequentialStream* stream, aos_unittest_t* ut) {
|
|
267 |
|
|
268 |
aosDbgCheck(ut->data != NULL);
|
|
269 |
|
|
270 |
aos_utresult_t result = {0, 0};
|
|
271 |
|
|
272 |
|
|
273 |
/*! Unit Test snippets for DW1000.
|
|
274 |
* @Note: Passed all 4 unit tests. Event IRQ should be tested separately
|
|
275 |
*/
|
|
276 |
#ifdef UNIT_TEST_SNIPPETS_DW1000
|
|
277 |
|
|
278 |
uint32_t actual_deviceId;
|
|
279 |
|
|
280 |
chprintf(stream, "init DW1000...\n");
|
|
281 |
dwt_initialise(DWT_LOADUCODE, (DW1000Driver*) ut->data);
|
|
282 |
aosThdMSleep(5);
|
|
283 |
|
|
284 |
port_DisableEXT_IRQ();
|
|
285 |
|
|
286 |
setHighSpeed_SPI(false);
|
|
287 |
chprintf(stream, "expected device ID (LS SPI): 0xDECA0130 \n");
|
|
288 |
aosThdMSleep(5);
|
|
289 |
actual_deviceId = instancereaddeviceid();
|
|
290 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId);
|
|
291 |
aosThdMSleep(5);
|
|
292 |
|
|
293 |
if(DWT_DEVICE_ID != actual_deviceId) //if the read of device ID fails, the DW1000 could be asleep
|
|
294 |
{
|
|
295 |
port_SPIx_clear_chip_select(); //CS low
|
|
296 |
aosThdMSleep(1); //200 us to wake up then waits 5ms for DW1000 XTAL to stabilise
|
|
297 |
port_SPIx_set_chip_select(); //CS high
|
|
298 |
aosThdMSleep(7);
|
|
299 |
actual_deviceId = instancereaddeviceid() ;
|
|
300 |
|
|
301 |
// SPI not working or Unsupported Device ID
|
|
302 |
if(DWT_DEVICE_ID != actual_deviceId){
|
|
303 |
chprintf(stream, "SPI not working or Unsupported Device ID\n");
|
|
304 |
chprintf(stream, "actual device ID is: 0x%x\n", actual_deviceId);
|
|
305 |
chprintf(stream, "expected device ID: 0xDECA0130 \n");
|
|
306 |
aosThdMSleep(5);
|
|
307 |
// return(-1) ;
|
|
308 |
}
|
|
309 |
|
|
310 |
//clear the sleep bit - so that after the hard reset below the DW does not go into sleep
|
|
311 |
dwt_softreset();
|
|
312 |
}
|
|
313 |
|
|
314 |
/*! Low speed SPI unit test result */
|
|
315 |
if (actual_deviceId == DWT_DEVICE_ID){
|
|
316 |
aosUtPassed(stream, &result);
|
|
317 |
} else {
|
|
318 |
aosUtFailed(stream, &result);
|
|
319 |
}
|
|
320 |
reset_DW1000();
|
|
321 |
|
|
322 |
|
|
323 |
chprintf(stream, " Initialise instance for DW1000 \n");
|
|
324 |
aosThdSleep(5);
|
|
325 |
|
|
326 |
int x_init = instance_init((DW1000Driver*) ut->data) ; // TODO
|
|
327 |
// int x_init = instance_init() ;
|
|
328 |
|
|
329 |
if (0 != x_init){
|
|
330 |
chprintf(stream, "Init error with return value: %d \n", x_init);
|
|
331 |
aosThdSleep(5);
|
|
332 |
}
|
|
333 |
else {
|
|
334 |
chprintf(stream, "Init success with return value: %d \n", x_init);
|
|
335 |
aosThdSleep(5);
|
|
336 |
}
|
|
337 |
|
|
338 |
|
|
339 |
/* Initialization unit test result */
|
|
340 |
if (x_init == 0){
|
|
341 |
aosUtPassed(stream, &result);
|
|
342 |
} else {
|
|
343 |
aosUtFailed(stream, &result);
|
|
344 |
}
|
|
345 |
|
|
346 |
|
|
347 |
setHighSpeed_SPI(true);
|
|
348 |
|
|
349 |
chprintf(stream, "expected device ID (HS SPI): 0xDECA0130\n");
|
|
350 |
actual_deviceId = instancereaddeviceid();
|
|
351 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId);
|
|
352 |
aosThdMSleep(5);
|
|
353 |
|
|
354 |
/* High speed SPI unit test result */
|
|
355 |
if (actual_deviceId == DWT_DEVICE_ID){
|
|
356 |
aosUtPassed(stream, &result);
|
|
357 |
} else {
|
|
358 |
aosUtFailed(stream, &result);
|
|
359 |
}
|
|
360 |
|
|
361 |
port_EnableEXT_IRQ();
|
|
362 |
reset_DW1000();
|
|
363 |
|
|
364 |
|
|
365 |
|
|
366 |
chprintf(stream, " Initialise the configuration for UWB application \n");
|
|
367 |
aosThdSleep(5);
|
|
368 |
|
|
369 |
int uwb_init = UWB_Init();
|
|
370 |
|
|
371 |
if (0 != uwb_init){
|
|
372 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init);
|
|
373 |
aosThdSleep(5);
|
|
374 |
}
|
|
375 |
else {
|
|
376 |
chprintf(stream, "UWB config success with return value: %d \n", uwb_init);
|
|
377 |
aosThdSleep(5);
|
|
378 |
}
|
|
379 |
|
|
380 |
/* UWB configuration unit test.
|
|
381 |
* If all the four unit tests are passed, the module is ready to run.
|
|
382 |
* Note that the interrupt IRQn should be tested separately.
|
|
383 |
*/
|
|
384 |
if (uwb_init == 0){
|
|
385 |
aosUtPassed(stream, &result);
|
|
386 |
} else {
|
|
387 |
aosUtFailed(stream, &result);
|
|
388 |
}
|
|
389 |
|
|
390 |
/************** End of UNIT_TEST_SNIPPETS_DW1000*****************/
|
|
391 |
|
|
392 |
#else
|
|
393 |
|
|
394 |
// RUN THE STATE MACHINE DEMO APP
|
|
395 |
|
|
396 |
chprintf(stream, " Initialise the State Machine \n");
|
|
397 |
aosThdSleep(2);
|
|
398 |
|
|
399 |
/* Initialize UWB system with the configuration provided in module_uwb_conf.c */
|
|
400 |
int uwb_init = UWB_Init();
|
|
401 |
|
|
402 |
if (0 != uwb_init){
|
|
403 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init);
|
|
404 |
}
|
|
405 |
else {
|
|
406 |
chprintf(stream, "UWB config success with return value: %d \n", uwb_init);
|
|
407 |
}
|
|
408 |
aosThdSleep(1);
|
|
409 |
|
|
410 |
chprintf(stream, " Running the RTLS demo application \n");
|
|
411 |
aosThdSleep(1);
|
|
412 |
|
|
413 |
|
|
414 |
/* Run the localization system demo app as a thread */
|
|
415 |
while(1){
|
|
416 |
instance_run();
|
|
417 |
// aosThdUSleep(10);
|
|
418 |
}
|
|
419 |
|
|
420 |
#endif /* UNIT_TEST_SNIPPETS_DW1000 */
|
|
421 |
|
|
422 |
return result;
|
|
423 |
}
|
|
424 |
|
|
425 |
|
|
426 |
#endif /* (AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1) */
|