amiro-os / components / MotorControl.cpp @ dd47d655
History | View | Annotate | Download (16.902 KB)
| 1 |
#include <ch.hpp> |
|---|---|
| 2 |
#include <hal.h> |
| 3 |
|
| 4 |
#include <qei.h> |
| 5 |
#include <chprintf.h> |
| 6 |
#include <amiro/MotorControl.h> |
| 7 |
#include <global.hpp> |
| 8 |
|
| 9 |
using namespace chibios_rt; |
| 10 |
using namespace amiro; |
| 11 |
using namespace types; |
| 12 |
using namespace constants; |
| 13 |
using namespace constants::DiWheelDrive; |
| 14 |
|
| 15 |
float MotorControl::wheelDiameterCorrectionFactor[2] = {1.0f, 1.0f}; |
| 16 |
float MotorControl::actualWheelBaseDistanceSI = wheelBaseDistanceSI;
|
| 17 |
extern Global global;
|
| 18 |
|
| 19 |
MotorControl::MotorControl(PWMDriver* pwm, MotorIncrements* mi, GPIO_TypeDef* port, int pad, fileSystemIo::FSIODiWheelDrive *memory)
|
| 20 |
: BaseStaticThread<512>(),
|
| 21 |
pwmDriver(pwm), |
| 22 |
motorIncrements(mi), |
| 23 |
powerEnablePort(port), |
| 24 |
powerEnablePad(pad), |
| 25 |
eventSource(), |
| 26 |
period(10),
|
| 27 |
memory(memory) {
|
| 28 |
|
| 29 |
this->pwmConfig.frequency = 7200000; |
| 30 |
this->pwmConfig.period = 360; |
| 31 |
this->pwmConfig.callback = NULL; |
| 32 |
this->pwmConfig.channels[0].mode = PWM_OUTPUT_ACTIVE_HIGH; |
| 33 |
this->pwmConfig.channels[0].callback = NULL; |
| 34 |
this->pwmConfig.channels[1].mode = PWM_OUTPUT_ACTIVE_HIGH; |
| 35 |
this->pwmConfig.channels[1].callback = NULL; |
| 36 |
this->pwmConfig.channels[2].mode = PWM_OUTPUT_ACTIVE_HIGH; |
| 37 |
this->pwmConfig.channels[2].callback = NULL; |
| 38 |
this->pwmConfig.channels[3].mode = PWM_OUTPUT_ACTIVE_HIGH; |
| 39 |
this->pwmConfig.channels[3].callback = NULL; |
| 40 |
this->pwmConfig.cr2 = 0; |
| 41 |
|
| 42 |
this->increment[0] = 0; |
| 43 |
this->increment[1] = 0; |
| 44 |
|
| 45 |
this->errorSum[0] = 0; |
| 46 |
this->errorSum[1] = 0; |
| 47 |
|
| 48 |
this->errorSumDiff = 0; |
| 49 |
|
| 50 |
// Init the velocities
|
| 51 |
this->currentVelocity.x = 0; |
| 52 |
this->currentVelocity.y = 0; |
| 53 |
this->currentVelocity.z = 0; |
| 54 |
this->currentVelocity.w_x = 0; |
| 55 |
this->currentVelocity.w_y = 0; |
| 56 |
this->currentVelocity.w_z = 0; |
| 57 |
this->targetVelocity.x = 0; |
| 58 |
this->targetVelocity.w_z = 0; |
| 59 |
|
| 60 |
this->newTargetVelocities = false; |
| 61 |
this->lastVelocitiesV[0] = 0; |
| 62 |
this->lastVelocitiesV[1] = 0; |
| 63 |
this->lastVelocitiesV[2] = 0; |
| 64 |
this->lastVelocitiesV[3] = 0; |
| 65 |
this->lastVelocitiesV[4] = 0; |
| 66 |
this->lastVelocitiesV[5] = 0; |
| 67 |
|
| 68 |
this->newTargetVelocities = true; |
| 69 |
|
| 70 |
// calibration stuff;
|
| 71 |
for (int i =0; i<3; i++){ |
| 72 |
this->leftWValues[i] = i;
|
| 73 |
this->rightWValues[i] = i;
|
| 74 |
} |
| 75 |
|
| 76 |
} |
| 77 |
|
| 78 |
int MotorControl::getCurrentRPMLeft() {
|
| 79 |
return this->actualSpeed[LEFT_WHEEL]; |
| 80 |
} |
| 81 |
|
| 82 |
int MotorControl::getCurrentRPMRight() {
|
| 83 |
return this->actualSpeed[RIGHT_WHEEL]; |
| 84 |
} |
| 85 |
|
| 86 |
kinematic MotorControl::getCurrentVelocity() {
|
| 87 |
return this->currentVelocity; |
| 88 |
} |
| 89 |
|
| 90 |
msg_t MotorControl::setWheelDiameterCorrectionFactor(float Ed /* = 1.0f */, bool_t storeEdToMemory /* = false */) { |
| 91 |
// cl (Eq. 17a)
|
| 92 |
MotorControl::wheelDiameterCorrectionFactor[LEFT_WHEEL] = 2.0f / (Ed + 1.0f); |
| 93 |
// cl (Eq. 17a)
|
| 94 |
MotorControl::wheelDiameterCorrectionFactor[RIGHT_WHEEL] = 2.0f / ((1.0f / Ed) + 1.0f); |
| 95 |
// Store Ed to memory
|
| 96 |
if (storeEdToMemory)
|
| 97 |
return memory->setEd(Ed);
|
| 98 |
else
|
| 99 |
return RDY_OK;
|
| 100 |
} |
| 101 |
|
| 102 |
msg_t MotorControl::setActualWheelBaseDistance(float Eb /* = 1.0f */, bool_t storeEbToMemory /* = false */) { |
| 103 |
// bActual (Eq. 4)
|
| 104 |
MotorControl::actualWheelBaseDistanceSI = wheelBaseDistanceSI * Eb; |
| 105 |
// Store Eb to memory
|
| 106 |
if (storeEbToMemory)
|
| 107 |
return memory->setEb(Eb);
|
| 108 |
else
|
| 109 |
return RDY_OK;
|
| 110 |
} |
| 111 |
|
| 112 |
EvtSource* MotorControl::getEventSource() {
|
| 113 |
return &this->eventSource; |
| 114 |
} |
| 115 |
|
| 116 |
void MotorControl::setTargetRPM(int32_t targetURpmLeft, int32_t targetURpmRight) {
|
| 117 |
// Velocity in µm/s in x direction
|
| 118 |
int32_t targetVelocityX = (wheelCircumferenceSI * (targetURpmLeft + targetURpmRight)) / secondsPerMinute / 2.0f; |
| 119 |
// Angular velocity around z in µrad/s
|
| 120 |
int32_t targetVelocityWz = (wheelCircumferenceSI * (targetURpmRight - targetURpmLeft)) / secondsPerMinute / MotorControl::actualWheelBaseDistanceSI; |
| 121 |
chSysLock(); |
| 122 |
this->targetVelocity.x = targetVelocityX;
|
| 123 |
this->targetVelocity.w_z = targetVelocityWz;
|
| 124 |
this->newTargetVelocities = true; |
| 125 |
chSysUnlock(); |
| 126 |
} |
| 127 |
|
| 128 |
void MotorControl::setTargetSpeed(const kinematic &targetVelocity) { |
| 129 |
chSysLock(); |
| 130 |
this->targetVelocity.x = targetVelocity.x;
|
| 131 |
this->targetVelocity.w_z = targetVelocity.w_z;
|
| 132 |
this->newTargetVelocities = true; |
| 133 |
chSysUnlock(); |
| 134 |
} |
| 135 |
|
| 136 |
msg_t MotorControl::main(void) {
|
| 137 |
systime_t time = System::getTime(); |
| 138 |
this->setName("MotorControl"); |
| 139 |
|
| 140 |
// load controller parameters from memory
|
| 141 |
this->memory->getWheelFactor(&this->motorCalibrationFactor); |
| 142 |
this->memory->getpGain(&this->pGain); |
| 143 |
this->memory->getiGain(&this->iGain); |
| 144 |
this->memory->getdGain(&this->dGain); |
| 145 |
this->memory->getEb(&this->Eb); |
| 146 |
this->memory->getEd(&this->Ed); |
| 147 |
|
| 148 |
pwmStart(this->pwmDriver, &this->pwmConfig); |
| 149 |
|
| 150 |
palSetPad(this->powerEnablePort, this->powerEnablePad); |
| 151 |
|
| 152 |
while (!this->shouldTerminate()) { |
| 153 |
time += MS2ST(this->period);
|
| 154 |
|
| 155 |
// Get the increments from the QEI
|
| 156 |
MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
| 157 |
|
| 158 |
// Get the actual speed from the gathered increments
|
| 159 |
MotorControl::updateSpeed(this->incrementDifference, this->actualSpeed, this->period); |
| 160 |
|
| 161 |
// Calculate velocities
|
| 162 |
this->calcVelocity();
|
| 163 |
|
| 164 |
// updates past velocities for the derivate part of the controller
|
| 165 |
updateDerivativeLastVelocities(); |
| 166 |
|
| 167 |
controllerAndCalibrationLogic(); |
| 168 |
|
| 169 |
// Write the calculated duty cycle to the pwm driver
|
| 170 |
this->writePulseWidthModulation();
|
| 171 |
|
| 172 |
chThdSleepUntil(time); |
| 173 |
|
| 174 |
delay ++; |
| 175 |
if (delay > 50){ |
| 176 |
delay = 0;
|
| 177 |
} |
| 178 |
|
| 179 |
} |
| 180 |
|
| 181 |
// Reset the PWM befor shutdown
|
| 182 |
this->pwmPercentage[LEFT_WHEEL] = 0; |
| 183 |
this->pwmPercentage[RIGHT_WHEEL] = 0; |
| 184 |
this->writePulseWidthModulation();
|
| 185 |
|
| 186 |
return true; |
| 187 |
} |
| 188 |
|
| 189 |
void MotorControl::controllerAndCalibrationLogic(){
|
| 190 |
if (!isCalibrating){
|
| 191 |
this->PIDController();
|
| 192 |
startedZieglerCalibration = true;
|
| 193 |
startedWheelCalibration = true;
|
| 194 |
} else {
|
| 195 |
if (motorCalibration){
|
| 196 |
if (startedWheelCalibration){
|
| 197 |
wheelCalibrationTime = System::getTime(); |
| 198 |
startedWheelCalibration = false;
|
| 199 |
} |
| 200 |
calibrate(); |
| 201 |
} else {
|
| 202 |
this->PIDController();
|
| 203 |
this->calibrateZiegler();
|
| 204 |
this->updatePastVelocities();
|
| 205 |
|
| 206 |
if (startedZieglerCalibration){
|
| 207 |
zieglerCalibrationTime = System::getTime(); |
| 208 |
startedZieglerCalibration = false;
|
| 209 |
} |
| 210 |
} |
| 211 |
} |
| 212 |
} |
| 213 |
|
| 214 |
void MotorControl::calibrate() {
|
| 215 |
|
| 216 |
this->pwmPercentage[LEFT_WHEEL] = 3000; |
| 217 |
this->pwmPercentage[RIGHT_WHEEL] = 3000; |
| 218 |
|
| 219 |
this->rightWValues[0] = this->rightWValues[1]; |
| 220 |
this->rightWValues[1] = this->rightWValues[2]; |
| 221 |
this->rightWValues[2] = getRightWheelSpeed(); |
| 222 |
|
| 223 |
this->leftWValues[0] = this->leftWValues[1]; |
| 224 |
this->leftWValues[1] = this->leftWValues[2]; |
| 225 |
this->leftWValues[2] = getLeftWheelSpeed(); |
| 226 |
|
| 227 |
|
| 228 |
if (this->rightWValues[0] == this->rightWValues[1] && |
| 229 |
this->rightWValues[1] == this->rightWValues[2] && |
| 230 |
this->leftWValues[0] == this->leftWValues[1] && |
| 231 |
this->leftWValues[1] == this->leftWValues[2] && |
| 232 |
System::getTime() - this->wheelCalibrationTime > 1500) { |
| 233 |
this->motorCalibrationFactor = (float)this->rightWValues[0]/(float)this->leftWValues[0]; |
| 234 |
|
| 235 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "motorCalibrationFactor = %f \n" ,this->motorCalibrationFactor); |
| 236 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "rw = %i \n" ,this->rightWValues[0]); |
| 237 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "lw = %i \n" ,this->leftWValues[0]); |
| 238 |
|
| 239 |
this->pwmPercentage[LEFT_WHEEL] = 0; |
| 240 |
this->pwmPercentage[RIGHT_WHEEL] = 0; |
| 241 |
this->motorCalibration = false; |
| 242 |
this->memory->setwheelfactor(motorCalibrationFactor);
|
| 243 |
} |
| 244 |
} |
| 245 |
|
| 246 |
void MotorControl::calibrateZiegler() {
|
| 247 |
|
| 248 |
this->iGain =0; |
| 249 |
this->dGain = 0; |
| 250 |
int nsc = this->getNumberofSignChanges(); |
| 251 |
|
| 252 |
if (System::getTime() - this->zieglerCalibrationTime > 1000){ |
| 253 |
this->zieglerCalibrationTime = System::getTime() ;
|
| 254 |
this->ziegler2 =true; |
| 255 |
} |
| 256 |
|
| 257 |
if (ziegler && ziegler2){
|
| 258 |
this->targetVelocity.x = 200000 * ((zieglerHelp%2 == 0) ? 1 : -1); |
| 259 |
this->pGain = 1000 + 100 * zieglerHelp; |
| 260 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "pgain = %i \n" , this->pGain); |
| 261 |
zieglerHelp++; |
| 262 |
ziegler = false;
|
| 263 |
ziegler2 = false;
|
| 264 |
} |
| 265 |
|
| 266 |
if (!ziegler && ziegler2){
|
| 267 |
this->targetVelocity.x = 0; |
| 268 |
ziegler2= false;
|
| 269 |
ziegler = true;
|
| 270 |
} |
| 271 |
|
| 272 |
if (zieglerHelp > 20){ |
| 273 |
this->isCalibrating = false; |
| 274 |
this->targetVelocity.x = 0; |
| 275 |
this->iGain = 0.08; |
| 276 |
this->pGain = 1000; |
| 277 |
} |
| 278 |
|
| 279 |
|
| 280 |
if ( nsc > 8){ |
| 281 |
zieglerHelp2++; |
| 282 |
if (zieglerHelp2 > 20){ |
| 283 |
this->zieglerPeriod = numberOfLastVelocitiesV * this->period / nsc; |
| 284 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "zieglerPeriod = %f \n" ,this->zieglerPeriod); |
| 285 |
|
| 286 |
this->targetVelocity.x = 0; |
| 287 |
this->pGain = (int) (this->pGain* 0.6); |
| 288 |
this->iGain = (float) ((1/(0.5*(this->zieglerPeriod/1000))/this->pGain)); |
| 289 |
this->dGain = (float) ((1/(0.125*(this->zieglerPeriod/1000))/this->pGain)); |
| 290 |
this->memory->setpGain(this->pGain); |
| 291 |
this->memory->setiGain(this->iGain); |
| 292 |
this->memory->setdGain(this->dGain); |
| 293 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "pgain = %i \n" ,this->pGain); |
| 294 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "igain = %f \n" ,this->iGain); |
| 295 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "dgain = %f \n" ,this->dGain); |
| 296 |
|
| 297 |
this->motorCalibration = true; |
| 298 |
ziegler = true;
|
| 299 |
ziegler2 = true;
|
| 300 |
this->isCalibrating = false; |
| 301 |
zieglerHelp = 0;
|
| 302 |
zieglerCalibrationTime = 0;
|
| 303 |
zieglerHelp2 = 0;
|
| 304 |
|
| 305 |
for (int i = 0; i< numberOfLastVelocitiesV ; i ++){ |
| 306 |
lastVelocitiesVBig[i] = 0;
|
| 307 |
} |
| 308 |
} |
| 309 |
} |
| 310 |
|
| 311 |
} |
| 312 |
|
| 313 |
void MotorControl::PIDController(){
|
| 314 |
|
| 315 |
//pgain #####################################
|
| 316 |
chSysLock(); |
| 317 |
int diffv =this->targetVelocity.x - this->currentVelocity.x; |
| 318 |
int diffw = this->targetVelocity.w_z - this->currentVelocity.w_z; |
| 319 |
chSysUnlock(); |
| 320 |
|
| 321 |
//igain ####################################
|
| 322 |
this->accumulatedErrorV += diffv;
|
| 323 |
this->accumulatedErrorW += diffw;
|
| 324 |
|
| 325 |
if (this->accumulatedErrorV > this->antiWindupV) |
| 326 |
this->accumulatedErrorV = this->antiWindupV; |
| 327 |
else if (this->accumulatedErrorV < -this->antiWindupV) |
| 328 |
this->accumulatedErrorV = -this->antiWindupV; |
| 329 |
|
| 330 |
if (this->accumulatedErrorW > this->antiWindupW) |
| 331 |
this->accumulatedErrorW = this->antiWindupW; |
| 332 |
else if (this->accumulatedErrorW < -this->antiWindupW) |
| 333 |
this->accumulatedErrorW = -this->antiWindupW; |
| 334 |
|
| 335 |
diffv += (int) (this->accumulatedErrorV*this->iGain); |
| 336 |
diffw += (int) (this->accumulatedErrorW*this->iGain); |
| 337 |
|
| 338 |
//dgain ###################################
|
| 339 |
int derivativeV;
|
| 340 |
int derivativeW;
|
| 341 |
int tmp1;
|
| 342 |
int tmp2;
|
| 343 |
|
| 344 |
tmp1 = static_cast<int32_t>((lastVelocitiesV[0]+lastVelocitiesV[1]+lastVelocitiesV[2])/3); |
| 345 |
tmp2 = static_cast<int32_t>((lastVelocitiesV[3]+lastVelocitiesV[4]+lastVelocitiesV[5])/3); |
| 346 |
derivativeV = static_cast<int32_t> ((tmp2-tmp1)/(int)(this->period)); |
| 347 |
tmp1 = static_cast<int32_t>((lastVelocitiesW[0]+lastVelocitiesW[1]+lastVelocitiesW[2])/3); |
| 348 |
tmp2 = static_cast<int32_t>((lastVelocitiesW[3]+lastVelocitiesW[4]+lastVelocitiesW[5])/3); |
| 349 |
derivativeW = static_cast<int32_t> ((tmp2-tmp1)/(int)(this->period)); |
| 350 |
|
| 351 |
|
| 352 |
diffv += (int) (dGain*derivativeV);
|
| 353 |
diffw += (int) (dGain*derivativeW);
|
| 354 |
|
| 355 |
setLeftWheelSpeed(diffv,diffw); |
| 356 |
setRightWheelSpeed(diffv, diffw); |
| 357 |
} |
| 358 |
|
| 359 |
|
| 360 |
|
| 361 |
void MotorControl::setLeftWheelSpeed(int diffv, int diffw){ |
| 362 |
this->pwmPercentage[LEFT_WHEEL] = (int) (this->pGain*2*(diffv-0.5*diffw*wheelBaseDistanceSI*this->Eb)/(wheelDiameter*this->wheelDiameterCorrectionFactor[LEFT_WHEEL])); |
| 363 |
|
| 364 |
} |
| 365 |
|
| 366 |
void MotorControl::setRightWheelSpeed(int diffv, int diffw){ |
| 367 |
this->pwmPercentage[RIGHT_WHEEL] = (int) (motorCalibrationFactor*this->pGain*2*(diffv+0.5*diffw*wheelBaseDistanceSI*this->Eb)/(wheelDiameter*this->wheelDiameterCorrectionFactor[RIGHT_WHEEL])); |
| 368 |
} |
| 369 |
|
| 370 |
|
| 371 |
// speed in um
|
| 372 |
int MotorControl::getRightWheelSpeed(){
|
| 373 |
int omega = 2*M_PI*this->actualSpeed[RIGHT_WHEEL]/60; // syslock noetig ? todo |
| 374 |
return omega * wheelDiameter*this->wheelDiameterCorrectionFactor[RIGHT_WHEEL]; |
| 375 |
} |
| 376 |
// speed in um
|
| 377 |
int MotorControl::getLeftWheelSpeed(){
|
| 378 |
int omega = 2*M_PI*this->actualSpeed[LEFT_WHEEL]/60; |
| 379 |
return omega * wheelDiameter*this->wheelDiameterCorrectionFactor[LEFT_WHEEL]; |
| 380 |
} |
| 381 |
|
| 382 |
|
| 383 |
void MotorControl::updatePastVelocities(){
|
| 384 |
for (int i=0; i<numberOfLastVelocitiesV-1;i++){ |
| 385 |
lastVelocitiesVBig[i] = lastVelocitiesVBig[i+1];
|
| 386 |
} |
| 387 |
|
| 388 |
lastVelocitiesVBig[numberOfLastVelocitiesV-1] = this->currentVelocity.x; |
| 389 |
|
| 390 |
} |
| 391 |
|
| 392 |
|
| 393 |
void MotorControl::updateDerivativeLastVelocities(){
|
| 394 |
for (int i=0; i<5;i++){ |
| 395 |
lastVelocitiesV[i] = lastVelocitiesV[i+1];
|
| 396 |
lastVelocitiesW[i] = lastVelocitiesW[i+1];
|
| 397 |
} |
| 398 |
|
| 399 |
|
| 400 |
lastVelocitiesV[5] = this->currentVelocity.x; |
| 401 |
lastVelocitiesW[5] = this->currentVelocity.w_z; |
| 402 |
|
| 403 |
|
| 404 |
} |
| 405 |
|
| 406 |
int MotorControl::getNumberofSignChanges(){
|
| 407 |
int nsc= 0; |
| 408 |
bool ispositive = true; |
| 409 |
bool tmpbool = true; |
| 410 |
if (lastVelocitiesVBig[0] < 0){ |
| 411 |
ispositive =false;
|
| 412 |
tmpbool =false;
|
| 413 |
} |
| 414 |
for (int i=0; i<numberOfLastVelocitiesV-1; i++){ |
| 415 |
if (lastVelocitiesVBig[i] < 0){ |
| 416 |
ispositive= false;
|
| 417 |
} else {
|
| 418 |
ispositive = true;
|
| 419 |
} |
| 420 |
if (ispositive != tmpbool){
|
| 421 |
nsc++; |
| 422 |
tmpbool = ispositive; |
| 423 |
} |
| 424 |
|
| 425 |
} |
| 426 |
|
| 427 |
return nsc;
|
| 428 |
} |
| 429 |
|
| 430 |
void MotorControl::printGains(){
|
| 431 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "motorCalibrationFactor %f\n", this->motorCalibrationFactor ); |
| 432 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "pGain %i\n", this->pGain ); |
| 433 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "iGain %f\n", this->iGain ); |
| 434 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "dGain %f\n", this->dGain ); |
| 435 |
} |
| 436 |
|
| 437 |
void MotorControl::resetGains()
|
| 438 |
{
|
| 439 |
// reset factors
|
| 440 |
chSysLock(); |
| 441 |
this->motorCalibrationFactor = 1.0f; |
| 442 |
this->pGain = 1000; |
| 443 |
this->iGain = 0.08f; |
| 444 |
this->dGain = 0.01f; |
| 445 |
chSysUnlock(); |
| 446 |
|
| 447 |
// write reset factors to memory
|
| 448 |
this->memory->setwheelfactor(this->motorCalibrationFactor); |
| 449 |
this->memory->setpGain(this->pGain); |
| 450 |
this->memory->setiGain(this->iGain); |
| 451 |
this->memory->setdGain(this->dGain); |
| 452 |
|
| 453 |
return;
|
| 454 |
} |
| 455 |
|
| 456 |
|
| 457 |
|
| 458 |
void MotorControl::calcVelocity() {
|
| 459 |
// Velocity in µm/s in x direction
|
| 460 |
currentVelocity.x = (1.0f*wheelCircumference * (this->actualSpeed[LEFT_WHEEL] + this->actualSpeed[RIGHT_WHEEL])) / secondsPerMinute / 2.0f; |
| 461 |
// Angular velocity around z in µrad/s
|
| 462 |
currentVelocity.w_z = (1.0f*wheelCircumference * (this->actualSpeed[RIGHT_WHEEL] - this->actualSpeed[LEFT_WHEEL])) / (1.0f*secondsPerMinute) / (wheelBaseDistanceSI*this->Eb); |
| 463 |
|
| 464 |
} |
| 465 |
|
| 466 |
|
| 467 |
|
| 468 |
void MotorControl::updateIncrements(MotorIncrements* motorIncrements, int32_t (&oldIncrement)[2], float (&incrementDifference)[2]) { |
| 469 |
int32_t currentIncrement[2];
|
| 470 |
|
| 471 |
chSysLock(); |
| 472 |
for (uint8_t idxWheel = 0; idxWheel < 2; idxWheel++) { |
| 473 |
currentIncrement[idxWheel] = motorIncrements->qeiGetPosition(idxWheel); |
| 474 |
} |
| 475 |
chSysUnlock(); |
| 476 |
|
| 477 |
// Calculate the difference between the last and
|
| 478 |
// actual increments and therefor the actual speed or distance
|
| 479 |
for (uint8_t idxWheel = 0; idxWheel < 2; idxWheel++) { |
| 480 |
|
| 481 |
// Get the difference
|
| 482 |
int32_t tmpIncrementDifference = oldIncrement[idxWheel] - currentIncrement[idxWheel]; |
| 483 |
|
| 484 |
// Handle overflow of increments
|
| 485 |
int range = motorIncrements->getQeiConfigRange();
|
| 486 |
if (tmpIncrementDifference > (range >> 1)) |
| 487 |
tmpIncrementDifference -= motorIncrements->getQeiConfigRange(); |
| 488 |
else if (tmpIncrementDifference < -(range >> 1)) |
| 489 |
tmpIncrementDifference += motorIncrements->getQeiConfigRange(); |
| 490 |
|
| 491 |
// Correct the difference
|
| 492 |
incrementDifference[idxWheel] = static_cast<float>(tmpIncrementDifference) * MotorControl::wheelDiameterCorrectionFactor[idxWheel]; |
| 493 |
|
| 494 |
// Save the actual increments
|
| 495 |
oldIncrement[idxWheel] = currentIncrement[idxWheel]; |
| 496 |
} |
| 497 |
} |
| 498 |
|
| 499 |
void MotorControl::updateSpeed(const float (&incrementDifference)[2], int32_t (&actualSpeed)[2], const uint32_t period) { |
| 500 |
const int32_t updatesPerMinute = 60 * 1000 / period; |
| 501 |
|
| 502 |
for (uint8_t idxWheel = 0; idxWheel < 2; idxWheel++) { |
| 503 |
// Save the actual speed
|
| 504 |
actualSpeed[idxWheel] = static_cast<int32_t>(static_cast<float>(updatesPerMinute * incrementDifference[idxWheel])) / incrementsPerRevolution; |
| 505 |
} |
| 506 |
} |
| 507 |
|
| 508 |
void MotorControl::updateDistance(const float (&incrementDifference)[2], float (&actualDistance)[2]) { |
| 509 |
|
| 510 |
for (uint8_t idxWheel = 0; idxWheel < 2; idxWheel++) { |
| 511 |
// Calc. the distance per wheel in meter
|
| 512 |
actualDistance[idxWheel] = wheelCircumferenceSI * incrementDifference[idxWheel] / static_cast<float>(incrementsPerRevolution); |
| 513 |
} |
| 514 |
} |
| 515 |
|
| 516 |
void MotorControl::writePulseWidthModulation() {
|
| 517 |
for (int idxWheel = 0; idxWheel < 2; idxWheel++) { |
| 518 |
int percentage = this->pwmPercentage[idxWheel]; |
| 519 |
unsigned int widths[2]; |
| 520 |
|
| 521 |
// 10000 is the max. duty cicle
|
| 522 |
if (percentage > 10000) { |
| 523 |
percentage = 10000;
|
| 524 |
} else if (percentage < -10000) { |
| 525 |
percentage = -10000;
|
| 526 |
} |
| 527 |
|
| 528 |
if (percentage < 0) { |
| 529 |
widths[0] = 0; |
| 530 |
widths[1] = PWM_PERCENTAGE_TO_WIDTH(this->pwmDriver, -percentage); |
| 531 |
} else {
|
| 532 |
widths[0] = PWM_PERCENTAGE_TO_WIDTH(this->pwmDriver, percentage); |
| 533 |
widths[1] = 0; |
| 534 |
} |
| 535 |
|
| 536 |
for (int idxPWM = 0; idxPWM < 2; idxPWM++) |
| 537 |
pwmEnableChannel(this->pwmDriver, (idxWheel * 2) + idxPWM, widths[idxPWM]); |
| 538 |
} |
| 539 |
} |