amiro-os / periphery-lld / aos_periphAL.c @ ded1ded7
History | View | Annotate | Download (14.9 KB)
1 |
/*
|
---|---|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
3 |
Copyright (C) 2016..2020 Thomas Schöpping et al.
|
4 |
|
5 |
This program is free software: you can redistribute it and/or modify
|
6 |
it under the terms of the GNU General Public License as published by
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
8 |
(at your option) any later version.
|
9 |
|
10 |
This program is distributed in the hope that it will be useful,
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
GNU General Public License for more details.
|
14 |
|
15 |
You should have received a copy of the GNU General Public License
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17 |
*/
|
18 |
|
19 |
#include <periphAL.h> |
20 |
#include <amiroos.h> |
21 |
|
22 |
/*============================================================================*/
|
23 |
/* DEBUG */
|
24 |
/*============================================================================*/
|
25 |
|
26 |
#if (AMIROLLD_CFG_DBG == true) && (AMIROOS_CFG_DBG == true) |
27 |
|
28 |
#include <chprintf.h> |
29 |
|
30 |
void apalDbgAssertMsg(const bool c, const char* fmt, ...) |
31 |
{ |
32 |
if (!c) {
|
33 |
va_list ap; |
34 |
|
35 |
va_start(ap, fmt); |
36 |
chvprintf((BaseSequentialStream*)&aos.iostream, fmt, ap); |
37 |
va_end(ap); |
38 |
chThdExit(MSG_RESET); |
39 |
} |
40 |
|
41 |
return;
|
42 |
} |
43 |
|
44 |
int apalDbgPrintf(const char* fmt, ...) |
45 |
{ |
46 |
va_list ap; |
47 |
|
48 |
va_start(ap, fmt); |
49 |
const int chars = chvprintf((BaseSequentialStream*)&aos.iostream, fmt, ap); |
50 |
va_end(ap); |
51 |
|
52 |
return chars;
|
53 |
} |
54 |
|
55 |
#endif /* (AMIROLLD_CFG_DBG == true) && (AMIROOS_CFG_DBG == true) */ |
56 |
|
57 |
/*============================================================================*/
|
58 |
/* TIMING */
|
59 |
/*============================================================================*/
|
60 |
|
61 |
#if (AMIROOS_CFG_DBG == true) |
62 |
|
63 |
void apalSleep(apalTime_t us)
|
64 |
{ |
65 |
// check if the specified time can be represented by the system
|
66 |
apalDbgAssert(us <= chTimeI2US(TIME_INFINITE)); |
67 |
|
68 |
const sysinterval_t interval = chTimeUS2I(us);
|
69 |
// TIME_IMMEDIATE makes no sense and would even cause system halt
|
70 |
if (interval != TIME_IMMEDIATE) {
|
71 |
chThdSleep(interval); |
72 |
} |
73 |
|
74 |
return;
|
75 |
} |
76 |
|
77 |
#endif /* (AMIROOS_CFG_DBG == true) */ |
78 |
|
79 |
apalTime_t apalGetTime(void)
|
80 |
{ |
81 |
aos_timestamp_t uptime; |
82 |
aosSysGetUptime(&uptime); |
83 |
|
84 |
return uptime & ~((apalTime_t)0); |
85 |
} |
86 |
|
87 |
/*============================================================================*/
|
88 |
/* GPIO */
|
89 |
/*============================================================================*/
|
90 |
|
91 |
#if (HAL_USE_PAL == TRUE)
|
92 |
|
93 |
apalExitStatus_t apalGpioRead(apalGpio_t* gpio, apalGpioState_t* const val)
|
94 |
{ |
95 |
apalDbgAssert(gpio != NULL);
|
96 |
apalDbgAssert(val != NULL);
|
97 |
|
98 |
*val = (palReadLine(gpio->line) == PAL_HIGH) ? APAL_GPIO_HIGH : APAL_GPIO_LOW; |
99 |
|
100 |
return APAL_STATUS_OK;
|
101 |
} |
102 |
|
103 |
apalExitStatus_t apalGpioWrite(apalGpio_t* gpio, const apalGpioState_t val)
|
104 |
{ |
105 |
apalDbgAssert(gpio != NULL);
|
106 |
|
107 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
108 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
109 |
palWriteLine(gpio->line, (val == APAL_GPIO_HIGH) ? PAL_HIGH : PAL_LOW); |
110 |
chSysRestoreStatusX(sysstatus); |
111 |
|
112 |
return APAL_STATUS_OK;
|
113 |
} |
114 |
|
115 |
apalExitStatus_t apalGpioToggle(apalGpio_t* gpio) |
116 |
{ |
117 |
apalDbgAssert(gpio != NULL);
|
118 |
|
119 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
120 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
121 |
palWriteLine(gpio->line, (palReadLine(gpio->line) == PAL_HIGH) ? PAL_LOW : PAL_HIGH); |
122 |
chSysRestoreStatusX(sysstatus); |
123 |
|
124 |
return APAL_STATUS_OK;
|
125 |
} |
126 |
|
127 |
apalExitStatus_t apalGpioIsInterruptEnabled(apalGpio_t* gpio, bool* const enabled) |
128 |
{ |
129 |
apalDbgAssert(gpio != NULL);
|
130 |
apalDbgAssert(enabled != NULL);
|
131 |
|
132 |
*enabled = palIsLineEventEnabledX(gpio->line); |
133 |
|
134 |
return APAL_STATUS_OK;
|
135 |
} |
136 |
|
137 |
apalExitStatus_t apalControlGpioGet(const apalControlGpio_t* const cgpio, apalControlGpioState_t* const val) |
138 |
{ |
139 |
apalDbgAssert(cgpio != NULL);
|
140 |
apalDbgAssert(cgpio->gpio != NULL);
|
141 |
apalDbgAssert(val != NULL);
|
142 |
|
143 |
*val = ((palReadLine(cgpio->gpio->line) == PAL_HIGH) ^ (cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH)) ? APAL_GPIO_OFF : APAL_GPIO_ON; |
144 |
|
145 |
return APAL_STATUS_OK;
|
146 |
} |
147 |
|
148 |
apalExitStatus_t apalControlGpioSet(const apalControlGpio_t* const cgpio, const apalControlGpioState_t val) |
149 |
{ |
150 |
apalDbgAssert(cgpio != NULL);
|
151 |
apalDbgAssert(cgpio->gpio != NULL);
|
152 |
apalDbgAssert(cgpio->meta.direction == APAL_GPIO_DIRECTION_OUTPUT || cgpio->meta.direction == APAL_GPIO_DIRECTION_BIDIRECTIONAL); |
153 |
|
154 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
155 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
156 |
palWriteLine(cgpio->gpio->line, ((cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH) ^ (val == APAL_GPIO_ON)) ? PAL_LOW : PAL_HIGH); |
157 |
chSysRestoreStatusX(sysstatus); |
158 |
|
159 |
return APAL_STATUS_OK;
|
160 |
} |
161 |
|
162 |
apalExitStatus_t apalControlGpioSetInterrupt(const apalControlGpio_t* const cgpio, const bool enable) |
163 |
{ |
164 |
apalDbgAssert(cgpio != NULL);
|
165 |
apalDbgAssert(cgpio->gpio != NULL);
|
166 |
|
167 |
if (enable) {
|
168 |
apalDbgAssert(pal_lld_get_line_event(cgpio->gpio->line) != NULL);
|
169 |
palEnableLineEvent(cgpio->gpio->line, APAL2CH_EDGE(cgpio->meta.edge)); |
170 |
} else {
|
171 |
palDisableLineEvent(cgpio->gpio->line); |
172 |
} |
173 |
|
174 |
return APAL_STATUS_OK;
|
175 |
} |
176 |
|
177 |
#endif /* (HAL_USE_PAL == TRUE) */ |
178 |
|
179 |
/*============================================================================*/
|
180 |
/* PWM */
|
181 |
/*============================================================================*/
|
182 |
|
183 |
#if (HAL_USE_PWM == TRUE)
|
184 |
|
185 |
apalExitStatus_t apalPWMSet(apalPWMDriver_t* pwm, const apalPWMchannel_t channel, const apalPWMwidth_t width) |
186 |
{ |
187 |
apalDbgAssert(pwm != NULL);
|
188 |
|
189 |
pwmEnableChannel(pwm, (pwmchannel_t)channel, pwm->period * ((float)width / (float)APAL_PWM_WIDTH_MAX) + 0.5f); |
190 |
|
191 |
return APAL_STATUS_OK;
|
192 |
} |
193 |
|
194 |
apalExitStatus_t apalPWMGetFrequency(apalPWMDriver_t* pwm, apalPWMfrequency_t* const frequency)
|
195 |
{ |
196 |
apalDbgAssert(pwm != NULL);
|
197 |
apalDbgAssert(frequency != NULL);
|
198 |
|
199 |
*frequency = pwm->config->frequency; |
200 |
|
201 |
return APAL_STATUS_OK;
|
202 |
} |
203 |
|
204 |
apalExitStatus_t apalPWMGetPeriod(apalPWMDriver_t* pwm, apalPWMperiod_t* const period)
|
205 |
{ |
206 |
apalDbgAssert(pwm != NULL);
|
207 |
apalDbgAssert(period != NULL);
|
208 |
|
209 |
*period = pwm->period; |
210 |
|
211 |
return APAL_STATUS_OK;
|
212 |
} |
213 |
|
214 |
#endif /* (HAL_USE_PWM == TRUE) */ |
215 |
|
216 |
/*============================================================================*/
|
217 |
/* QEI */
|
218 |
/*============================================================================*/
|
219 |
|
220 |
#if (HAL_USE_QEI == TRUE)
|
221 |
|
222 |
apalExitStatus_t apalQEIGetDirection(apalQEIDriver_t* qei, apalQEIDirection_t* const direction)
|
223 |
{ |
224 |
apalDbgAssert(qei != NULL);
|
225 |
apalDbgAssert(direction != NULL);
|
226 |
|
227 |
*direction = (qei_lld_get_direction(qei)) ? APAL_QEI_DIRECTION_DOWN : APAL_QEI_DIRECTION_UP; |
228 |
|
229 |
return APAL_STATUS_OK;
|
230 |
} |
231 |
|
232 |
apalExitStatus_t apalQEIGetPosition(apalQEIDriver_t* qei, apalQEICount_t* const position)
|
233 |
{ |
234 |
apalDbgAssert(qei != NULL);
|
235 |
apalDbgAssert(position != NULL);
|
236 |
|
237 |
*position = qei_lld_get_position(qei); |
238 |
|
239 |
return APAL_STATUS_OK;
|
240 |
} |
241 |
|
242 |
apalExitStatus_t apalQEIGetRange(apalQEIDriver_t* qei, apalQEICount_t* const range)
|
243 |
{ |
244 |
apalDbgAssert(qei != NULL);
|
245 |
apalDbgAssert(range != NULL);
|
246 |
|
247 |
*range = qei_lld_get_range(qei); |
248 |
|
249 |
return APAL_STATUS_OK;
|
250 |
} |
251 |
|
252 |
#endif /* (HAL_USE_QEI == TRUE) */ |
253 |
|
254 |
/*============================================================================*/
|
255 |
/* I2C */
|
256 |
/*============================================================================*/
|
257 |
|
258 |
#if (HAL_USE_I2C == TRUE) || defined(__DOXYGEN__)
|
259 |
|
260 |
apalExitStatus_t apalI2CMasterTransmit(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, const uint8_t* const txbuf, const size_t txbytes, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
261 |
{ |
262 |
apalDbgAssert(i2cd != NULL);
|
263 |
|
264 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
265 |
// check whether the I2C driver was locked externally
|
266 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
267 |
if (!i2cd_locked_external) {
|
268 |
i2cAcquireBus(i2cd); |
269 |
} |
270 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
271 |
|
272 |
#pragma GCC diagnostic push
|
273 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
274 |
#if defined(STM32F1XX_I2C)
|
275 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
276 |
msg_t status = MSG_OK; |
277 |
if (rxbytes == 1) { |
278 |
uint8_t buffer[2];
|
279 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
280 |
rxbuf[0] = buffer[0]; |
281 |
} else {
|
282 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
283 |
} |
284 |
#else /* defined(STM32F1XX_I2C) */ |
285 |
const msg_t status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
286 |
#endif /* defined(STM32F1XX_I2C) */ |
287 |
#pragma GCC diagnostic pop
|
288 |
|
289 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
290 |
if (!i2cd_locked_external) {
|
291 |
i2cReleaseBus(i2cd); |
292 |
} |
293 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
294 |
|
295 |
switch (status)
|
296 |
{ |
297 |
case MSG_OK:
|
298 |
#if defined(STM32F1XX_I2C)
|
299 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
300 |
#else /* defined(STM32F1XX_I2C) */ |
301 |
return APAL_STATUS_OK;
|
302 |
#endif /* defined(STM32F1XX_I2C) */ |
303 |
case MSG_TIMEOUT:
|
304 |
return APAL_STATUS_TIMEOUT;
|
305 |
case MSG_RESET:
|
306 |
default:
|
307 |
return APAL_STATUS_ERROR;
|
308 |
} |
309 |
} |
310 |
|
311 |
apalExitStatus_t apalI2CMasterReceive(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
312 |
{ |
313 |
apalDbgAssert(i2cd != NULL);
|
314 |
|
315 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
316 |
// check whether the I2C driver was locked externally
|
317 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
318 |
if (!i2cd_locked_external) {
|
319 |
i2cAcquireBus(i2cd); |
320 |
} |
321 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
322 |
|
323 |
#pragma GCC diagnostic push
|
324 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
325 |
#if defined(STM32F1XX_I2C)
|
326 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
327 |
msg_t status = MSG_OK; |
328 |
if (rxbytes == 1) { |
329 |
uint8_t buffer[2];
|
330 |
status = i2cMasterReceiveTimeout(i2cd, addr, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
331 |
rxbuf[0] = buffer[0]; |
332 |
} else {
|
333 |
status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
334 |
} |
335 |
#else /* defined(STM32F1XX_I2C) */ |
336 |
const msg_t status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
337 |
#endif /* defined(STM32F1XX_I2C) */ |
338 |
#pragma GCC diagnostic pop
|
339 |
|
340 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
341 |
if (!i2cd_locked_external) {
|
342 |
i2cReleaseBus(i2cd); |
343 |
} |
344 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
345 |
|
346 |
switch (status)
|
347 |
{ |
348 |
case MSG_OK:
|
349 |
#if defined(STM32F1XX_I2C)
|
350 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
351 |
#else /* defined(STM32F1XX_I2C) */ |
352 |
return APAL_STATUS_OK;
|
353 |
#endif /* defined(STM32F1XX_I2C) */ |
354 |
case MSG_TIMEOUT:
|
355 |
return APAL_STATUS_TIMEOUT;
|
356 |
case MSG_RESET:
|
357 |
default:
|
358 |
return APAL_STATUS_ERROR;
|
359 |
} |
360 |
} |
361 |
|
362 |
#endif /* (HAL_USE_I2C == TRUE) */ |
363 |
|
364 |
/*============================================================================*/
|
365 |
/* SPI */
|
366 |
/*============================================================================*/
|
367 |
|
368 |
#if (HAL_USE_SPI == TRUE) || defined(__DOXYGEN__)
|
369 |
|
370 |
apalExitStatus_t apalSPITransmit(apalSPIDriver_t* spid, const uint8_t* const data, const size_t length) |
371 |
{ |
372 |
apalDbgAssert(spid != NULL);
|
373 |
|
374 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
375 |
// check whether the SPI driver was locked externally
|
376 |
const bool spid_locked_external = spid->mutex.owner == currp; |
377 |
if (!spid_locked_external) {
|
378 |
spiAcquireBus(spid); |
379 |
} |
380 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
381 |
|
382 |
spiSelect(spid); |
383 |
spiSend(spid, length, data); |
384 |
spiUnselect(spid); |
385 |
|
386 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
387 |
if (!spid_locked_external) {
|
388 |
spiReleaseBus(spid); |
389 |
} |
390 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
391 |
|
392 |
return APAL_STATUS_OK;
|
393 |
} |
394 |
|
395 |
apalExitStatus_t apalSPIReceive(apalSPIDriver_t* spid, uint8_t* const data, const size_t length) |
396 |
{ |
397 |
apalDbgAssert(spid != NULL);
|
398 |
|
399 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
400 |
// check whether the SPI driver was locked externally
|
401 |
const bool spid_locked_external = spid->mutex.owner == currp; |
402 |
if (!spid_locked_external) {
|
403 |
spiAcquireBus(spid); |
404 |
} |
405 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
406 |
|
407 |
spiSelect(spid); |
408 |
spiReceive(spid, length, data); |
409 |
spiUnselect(spid); |
410 |
|
411 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
412 |
if (!spid_locked_external) {
|
413 |
spiReleaseBus(spid); |
414 |
} |
415 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
416 |
|
417 |
return APAL_STATUS_OK;
|
418 |
} |
419 |
|
420 |
apalExitStatus_t apalSPITransmitAndReceive(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t txLength, const size_t rxLength) |
421 |
{ |
422 |
apalDbgAssert(spid != NULL);
|
423 |
|
424 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
425 |
// check whether the SPI driver was locked externally
|
426 |
const bool spid_locked_external = spid->mutex.owner == currp; |
427 |
if (!spid_locked_external) {
|
428 |
spiAcquireBus(spid); |
429 |
} |
430 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
431 |
|
432 |
spiSelect(spid); |
433 |
spiSend(spid, txLength, txData); |
434 |
spiReceive(spid, rxLength, rxData); |
435 |
spiUnselect(spid); |
436 |
|
437 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
438 |
if (!spid_locked_external) {
|
439 |
spiReleaseBus(spid); |
440 |
} |
441 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
442 |
|
443 |
return APAL_STATUS_OK;
|
444 |
} |
445 |
|
446 |
apalExitStatus_t apalSPIExchange(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t length) |
447 |
{ |
448 |
apalDbgAssert(spid != NULL);
|
449 |
|
450 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
451 |
// check whether the SPI driver was locked externally
|
452 |
const bool spid_locked_external = spid->mutex.owner == currp; |
453 |
if (!spid_locked_external) {
|
454 |
spiAcquireBus(spid); |
455 |
} |
456 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
457 |
|
458 |
spiSelect(spid); |
459 |
spiExchange(spid, length, txData, rxData); |
460 |
spiUnselect(spid); |
461 |
|
462 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
463 |
if (!spid_locked_external) {
|
464 |
spiReleaseBus(spid); |
465 |
} |
466 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
467 |
|
468 |
return APAL_STATUS_OK;
|
469 |
} |
470 |
|
471 |
apalExitStatus_t apalSPIReconfigure(apalSPIDriver_t* spid, const apalSPIConfig_t* config)
|
472 |
{ |
473 |
apalDbgAssert(spid != NULL);
|
474 |
apalDbgAssert(config != NULL);
|
475 |
|
476 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
477 |
// check whether the SPI driver was locked externally
|
478 |
const bool spid_locked_external = spid->mutex.owner == currp; |
479 |
if (!spid_locked_external) {
|
480 |
spiAcquireBus(spid); |
481 |
} |
482 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
483 |
|
484 |
spiStop(spid); |
485 |
spiStart(spid, config); |
486 |
|
487 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
488 |
if (!spid_locked_external) {
|
489 |
spiReleaseBus(spid); |
490 |
} |
491 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
492 |
|
493 |
return APAL_STATUS_OK;
|
494 |
} |
495 |
|
496 |
#endif /* (HAL_USE_SPI == TRUE) */ |