amiro-os / devices / DiWheelDrive / amiro_map.cpp @ ec052975
History | View | Annotate | Download (7.52 KB)
| 1 |
#include "amiro_map.hpp" |
|---|---|
| 2 |
|
| 3 |
uint8_t AmiroMap::initialize(){
|
| 4 |
|
| 5 |
// Clear old values in case the map is initialized again
|
| 6 |
this->state.current = 0; |
| 7 |
this->state.next = 0; |
| 8 |
this->state.valid = false; |
| 9 |
this->nodeCount = 0; |
| 10 |
this->state.strategy = 0x1; |
| 11 |
|
| 12 |
// convert proto map to internal representation
|
| 13 |
for (int i=0; i<MAX_NODES; i++){ |
| 14 |
if(global->testmap[i][2] == 0xff && i != 0){ |
| 15 |
break;
|
| 16 |
} else if (global->testmap[i][2] == 0xff && i == 0) { |
| 17 |
this->state.valid = false; |
| 18 |
return 255; |
| 19 |
} |
| 20 |
|
| 21 |
//look for start node (default is Node 0)
|
| 22 |
if (global->testmap[i][2] == 1 ) { |
| 23 |
this->state.current = i;
|
| 24 |
} |
| 25 |
|
| 26 |
this->nodeList[i].id = i;
|
| 27 |
this->nodeList[i].left = global->testmap[i][0]; |
| 28 |
this->nodeList[i].right = global->testmap[i][1]; |
| 29 |
this->nodeList[i].flag = global->testmap[i][2]; |
| 30 |
this->nodeCount++;
|
| 31 |
} |
| 32 |
this->state.next = this->nodeList[this->state.current].right; |
| 33 |
|
| 34 |
// TODO make validity check
|
| 35 |
|
| 36 |
for (int j=0; j<nodeCount; j++) { |
| 37 |
this->nodeList[j].visited = 0; |
| 38 |
visitNode(j); |
| 39 |
for (int k = 0; k < nodeCount; k++) { |
| 40 |
if (this->nodeList[k].visited == 1) { |
| 41 |
this->nodeList[k].visited = 0; |
| 42 |
} else {
|
| 43 |
this->state.valid = false; |
| 44 |
return k;
|
| 45 |
} |
| 46 |
} |
| 47 |
} |
| 48 |
|
| 49 |
this->state.valid = true; |
| 50 |
return 42; |
| 51 |
} |
| 52 |
|
| 53 |
void AmiroMap::visitNode(uint8_t id){
|
| 54 |
if (this->nodeList[id].visited == 1){ |
| 55 |
return;
|
| 56 |
}else{
|
| 57 |
nodeList[id].visited = 1;
|
| 58 |
visitNode(this->nodeList[id].left);
|
| 59 |
visitNode(this->nodeList[id].right);
|
| 60 |
} |
| 61 |
} |
| 62 |
|
| 63 |
uint8_t AmiroMap::update(uint16_t WL, uint16_t WR, LineFollowStrategy strategy) {
|
| 64 |
// Called each time at the end of the user thread state machine
|
| 65 |
// The bottom sensors will be checked for black ground which is interpreted as
|
| 66 |
// filxpoint
|
| 67 |
|
| 68 |
// set the strategy directly, actually there is no need to store that variable in the class
|
| 69 |
// but we will go with it for now to initialize everything properly.
|
| 70 |
uint8_t flag = 0;
|
| 71 |
this->lfStrategy = strategy;
|
| 72 |
// uint16_t WL = global->vcnl4020[constants::DiWheelDrive::PROX_WHEEL_LEFT].getProximityScaledWoOffset();
|
| 73 |
// uint16_t WR = global->vcnl4020[constants::DiWheelDrive::PROX_WHEEL_RIGHT].getProximityScaledWoOffset();
|
| 74 |
|
| 75 |
// Check the wheel sensors
|
| 76 |
bool left = global->linePID.BThresh >= WL;
|
| 77 |
bool right = global->linePID.BThresh >= WR;
|
| 78 |
types::position currentPos = global->odometry.getPosition(); |
| 79 |
|
| 80 |
if (left && right) {
|
| 81 |
// TODO A dangerous case -> amiro could be lifted
|
| 82 |
flag |= 255;
|
| 83 |
} |
| 84 |
else if (left && !leftDetected) { |
| 85 |
// The sensor on the left side of the Amiro is driving on black
|
| 86 |
// To prevent continous fixpoint detection a point needs to be marked as currently detected
|
| 87 |
// and released.
|
| 88 |
leftDetected = true;
|
| 89 |
copyPoint(¤tPos, &nodeList[state.next].pR); |
| 90 |
nodeList[state.next].visited |= 0x01;
|
| 91 |
state.current = state.next; |
| 92 |
state.next = nodeList[state.current].right; |
| 93 |
state.strategy = 0x01;
|
| 94 |
state.eLength = 0; // Reset length to get recalculated after fixpoint |
| 95 |
flag |= 0x1;
|
| 96 |
} |
| 97 |
else if (right && !rightDetected) { |
| 98 |
// Same as left only for the right sensor.
|
| 99 |
rightDetected = true;
|
| 100 |
copyPoint(¤tPos, &nodeList[state.next].pR); |
| 101 |
nodeList[state.next].visited |= 0x02;
|
| 102 |
state.current = state.next; |
| 103 |
state.next = nodeList[state.current].left; |
| 104 |
state.strategy = 0x2;
|
| 105 |
state.eLength = 0; // Reset length to get recalculated after fixpoint |
| 106 |
flag |= 0x2;
|
| 107 |
} |
| 108 |
else if (!left && !right) { |
| 109 |
// in case the fixpoint is not detected anymore
|
| 110 |
leftDetected = false;
|
| 111 |
rightDetected = false;
|
| 112 |
flag |= 0x4;
|
| 113 |
} |
| 114 |
|
| 115 |
|
| 116 |
// update internal map_state
|
| 117 |
// Update travel distance
|
| 118 |
// check if the nodes of the specific strategy where visited
|
| 119 |
if (state.strategy
|
| 120 |
== nodeList[state.current].visited) {
|
| 121 |
flag |= 0x8;
|
| 122 |
// only update distance if both nodes were visited
|
| 123 |
// Calculate estimated length of the edge
|
| 124 |
if (state.strategy == 0x01) { |
| 125 |
// Amiro is driving on the right edge
|
| 126 |
// only calculate edge length if the node is already vivited
|
| 127 |
if ((state.eLength == 0) && (state.strategy == nodeList[state.current].visited)) { |
| 128 |
state.eLength = calculateDist(&nodeList[state.next].pR, |
| 129 |
&nodeList[state.current].pR); |
| 130 |
} |
| 131 |
state.dist = calculateDist(&nodeList[state.current].pR, ¤tPos); |
| 132 |
} else {
|
| 133 |
// Driving on the left edge
|
| 134 |
if ((state.eLength == 0) && |
| 135 |
(state.strategy == nodeList[state.current].visited)) {
|
| 136 |
state.eLength = calculateDist(&nodeList[state.next].pR, |
| 137 |
&nodeList[state.current].pR); |
| 138 |
} |
| 139 |
state.dist = calculateDist(&nodeList[state.current].pL, ¤tPos); |
| 140 |
|
| 141 |
} |
| 142 |
} |
| 143 |
return flag;
|
| 144 |
} |
| 145 |
|
| 146 |
uint32_t AmiroMap::calculateDist(types::position *p1, types::position *p2) {
|
| 147 |
return (uint32_t) sqrt(pow((p2->x - p1->x)/10000, 2) + |
| 148 |
pow((p2->y - p1->y)/10000, 2)); |
| 149 |
} |
| 150 |
|
| 151 |
uint8_t AmiroMap::trackUpdate(uint16_t WL, uint16_t WR, LineFollowStrategy strategy, |
| 152 |
ut_states ut_state) {
|
| 153 |
// Check if map is valid
|
| 154 |
if (this->state.valid){ |
| 155 |
return update(WL, WR, strategy);
|
| 156 |
} |
| 157 |
|
| 158 |
// Create init node if none is there
|
| 159 |
// We will not assign a point to the initial fixpoint because it is not clear if
|
| 160 |
// start position is at the correct point
|
| 161 |
if (nodeCount == 0) { |
| 162 |
createInitNode(); |
| 163 |
} |
| 164 |
|
| 165 |
bool left = global->linePID.BThresh >= WL;
|
| 166 |
bool right = global->linePID.BThresh >= WR;
|
| 167 |
types::position currentPos = global->odometry.getPosition(); |
| 168 |
|
| 169 |
// Assign fixpoint if side sensor is black
|
| 170 |
// Do not update if update was already applied the round before (leftDetected || rightDetected) == true
|
| 171 |
if ((left || right) && !(leftDetected || rightDetected)) {
|
| 172 |
// Determine what strategy to use
|
| 173 |
// assignFxp() will use strategy to assign the next point
|
| 174 |
state.strategy = right ? 1 : 2; |
| 175 |
|
| 176 |
// Check if next point is reachable
|
| 177 |
if (state.next == 255){ |
| 178 |
// Prepare state values for switch
|
| 179 |
assignFxp(¤tPos); |
| 180 |
} |
| 181 |
|
| 182 |
}else if (!(left || right)) { |
| 183 |
// TODO: do we need both?
|
| 184 |
leftDetected = rightDetected = true;
|
| 185 |
} |
| 186 |
|
| 187 |
|
| 188 |
} |
| 189 |
|
| 190 |
|
| 191 |
|
| 192 |
void AmiroMap::calTravelState() {
|
| 193 |
|
| 194 |
} |
| 195 |
|
| 196 |
void AmiroMap::checkMap() {
|
| 197 |
|
| 198 |
} |
| 199 |
|
| 200 |
|
| 201 |
void AmiroMap::switchToNext(types::position *p1) {
|
| 202 |
|
| 203 |
// Update point if node was not visited before
|
| 204 |
if ((nodeList[state.next].visited & state.strategy) == 0){ |
| 205 |
copyPoint(p1, &nodeList[state.next].p.arr[state.strategy - 1]);
|
| 206 |
nodeList[state.next].visited |= state.strategy; |
| 207 |
} |
| 208 |
|
| 209 |
leftDetected = true;
|
| 210 |
state.current = state.next; |
| 211 |
state.next = nodeList[state.current].edge.arr[state.strategy - 1];
|
| 212 |
state.eLength = 0; // Reset length to get recalculated after fixpoint |
| 213 |
return;
|
| 214 |
} |
| 215 |
|
| 216 |
|
| 217 |
void AmiroMap::copyPoint(types::position* from, types::position* to) {
|
| 218 |
to->x = from->x; |
| 219 |
to->y = from->y; |
| 220 |
to->f_x = from->f_x; |
| 221 |
} |
| 222 |
|
| 223 |
|
| 224 |
void AmiroMap::createInitNode() {
|
| 225 |
this->nodeCount = 0; |
| 226 |
state.current = addNode(255, 255, 1); |
| 227 |
state.next = 255;
|
| 228 |
} |
| 229 |
|
| 230 |
uint8_t AmiroMap::getNearest(types::position *p1) {
|
| 231 |
uint8_t b; |
| 232 |
return b;
|
| 233 |
} |
| 234 |
|
| 235 |
uint8_t AmiroMap::assignFxp(types::position *p1) {
|
| 236 |
|
| 237 |
// Magic happens to determine if fixpoint is close enough
|
| 238 |
uint8_t id = getNearest(p1); |
| 239 |
if(id < 255){ |
| 240 |
// strategy is either 1 - right or 2 - left
|
| 241 |
// Copy current point to either left or right point
|
| 242 |
copyPoint(p1, &nodeList[id].p.arr[state.strategy - 1]);
|
| 243 |
}else {
|
| 244 |
// A new fixpoint needs to be created
|
| 245 |
id = addNode(255, 255, 0); |
| 246 |
copyPoint(p1, &nodeList[id].p.arr[state.strategy - 1]);
|
| 247 |
} |
| 248 |
|
| 249 |
// Prepare values for switching
|
| 250 |
state.next = id; |
| 251 |
nodeList[state.current].edge.arr[state.strategy - 1] = id;
|
| 252 |
// Mark point as visited
|
| 253 |
nodeList[id].visited |= state.strategy; |
| 254 |
return id;
|
| 255 |
} |