amiro-os / include / amiro / Constants.h @ f1d13b04
History | View | Annotate | Download (9.935 KB)
1 |
#ifndef AMIRO_CONSTANTS_H_
|
---|---|
2 |
#define AMIRO_CONSTANTS_H_
|
3 |
|
4 |
/*! \brief Constants regarding the AMiRo platform
|
5 |
*
|
6 |
* This header contains constant variables
|
7 |
* regarding the AMiRo platform, which means that
|
8 |
* these values do not change during runtime.
|
9 |
* Constants are e.g. physical ones like seconds per minute
|
10 |
* or geometrical ones like the circumference of wheel.
|
11 |
* All physical constants (therefore all values with a
|
12 |
* physical unit) are implicitly in µ iff the variable
|
13 |
* is of type integer, unless it is explicitly named in
|
14 |
* the variable.
|
15 |
* All physical constants (therefore all values with a
|
16 |
* physical unit) are implicitly without prefix (e.g. µ)
|
17 |
* iff the variable is of type float, unless it is
|
18 |
* explicitly named in the variable. The SI prefix is
|
19 |
* used, iff the variable is of type float and therefor
|
20 |
* in SI units.
|
21 |
*/
|
22 |
|
23 |
#include <math.h> |
24 |
#include <stdint.h> |
25 |
|
26 |
/* CAN_* defines start */
|
27 |
|
28 |
/** \brief Controller Area Network specific defines
|
29 |
*
|
30 |
* These CAN_* defines are used in ControllerAreaNetworkRx.h
|
31 |
* and ControllerAreaNetworkTx.h
|
32 |
*/
|
33 |
|
34 |
/* CAN_* defines end */
|
35 |
|
36 |
namespace amiro { |
37 |
|
38 |
struct map_state {
|
39 |
// 0 - left, 1- right
|
40 |
uint8_t strategy; |
41 |
// Node ID of last detected fixpoint
|
42 |
uint8_t current; |
43 |
// Next node ID
|
44 |
uint8_t next; |
45 |
// Traveled Distance between current and next in %
|
46 |
uint32_t dist; |
47 |
// True if the current loaded map is valid
|
48 |
bool valid;
|
49 |
// Length of the currently traveled edge
|
50 |
uint32_t eLength; |
51 |
}; |
52 |
|
53 |
enum msg_content : uint8_t {
|
54 |
MSG_STOP = 0,
|
55 |
MSG_START = 1,
|
56 |
MSG_EDGE_LEFT = 2,
|
57 |
MSG_EDGE_RIGHT = 3,
|
58 |
MSG_FUZZY = 4,
|
59 |
MSG_DOCK = 5,
|
60 |
MSG_UNDOCK = 6,
|
61 |
MSG_CHARGE = 7,
|
62 |
MSG_RESET_ODOMETRY = 8,
|
63 |
MSG_CALIBRATE_BLACK = 9,
|
64 |
MSG_CALIBRATE_WHITE = 10,
|
65 |
MSG_TEST_MAP_STATE = 11,
|
66 |
MSG_SET_DIST_THRESH = 12,
|
67 |
MSG_GET_MAP_INFO = 13
|
68 |
}; |
69 |
|
70 |
enum ut_states : int8_t {
|
71 |
UT_IDLE = 0,
|
72 |
UT_FOLLOW_LINE = 1,
|
73 |
UT_DETECT_STATION = 2,
|
74 |
UT_REVERSE = 3,
|
75 |
UT_PUSH_BACK = 4,
|
76 |
UT_CHECK_POSITIONING = 5,
|
77 |
UT_CHECK_VOLTAGE = 6,
|
78 |
UT_CHARGING = 7,
|
79 |
UT_RELEASE = 8,
|
80 |
UT_RELEASE_TO_CORRECT = 9,
|
81 |
UT_CORRECT_POSITIONING = 10,
|
82 |
UT_TURN = 12,
|
83 |
UT_INACTIVE = 13,
|
84 |
UT_CALIBRATION = 14,
|
85 |
UT_CALIBRATION_CHECK = 15,
|
86 |
UT_DEVIATION_CORRECTION = 16,
|
87 |
UT_TEST_MAP_STATE = 17,
|
88 |
UT_TEST_MAP_AUTO_STATE = 18,
|
89 |
UT_DOCKING_ERROR = -1,
|
90 |
UT_REVERSE_TIMEOUT_ERROR = -2,
|
91 |
UT_CALIBRATION_ERROR = -3,
|
92 |
UT_WHITE_DETECTION_ERROR = -4,
|
93 |
UT_PROXY_DETECTION_ERROR = -5,
|
94 |
UT_NO_CHARGING_POWER_ERROR = -6,
|
95 |
UT_UNKNOWN_STATE_ERROR = -7
|
96 |
}; |
97 |
|
98 |
namespace CAN { |
99 |
|
100 |
const uint32_t UPDATE_PERIOD = US2ST(10000); // 100 Hz |
101 |
|
102 |
const uint32_t PERIODIC_TIMER_ID = 1; |
103 |
const uint32_t RECEIVED_ID = 2; |
104 |
|
105 |
const uint32_t BOARD_ID_SHIFT = 0x00u; |
106 |
const uint32_t BOARD_ID_MASK = 0x07u; |
107 |
const uint32_t DEVICE_ID_SHIFT = 0x03u; |
108 |
const uint32_t DEVICE_ID_MASK = 0xFFu; |
109 |
const uint32_t INDEX_ID_SHIFT = 0x03u; |
110 |
const uint32_t INDEX_ID_MASK = 0x07u; |
111 |
|
112 |
const uint32_t DI_WHEEL_DRIVE_ID = 1; |
113 |
const uint32_t POWER_MANAGEMENT_ID = 2; |
114 |
const uint32_t LIGHT_RING_ID = 3; |
115 |
const uint32_t COGNITION = 4; |
116 |
|
117 |
const uint32_t MAGNETOMETER_X_ID = 0x54; |
118 |
const uint32_t MAGNETOMETER_Y_ID = 0x55; |
119 |
const uint32_t MAGNETOMETER_Z_ID = 0x56; |
120 |
const uint32_t GYROSCOPE_ID = 0x58; |
121 |
const uint32_t PROXIMITY_FLOOR_ID = 0x51; |
122 |
const uint32_t ODOMETRY_ID = 0x50; |
123 |
const uint32_t BRIGHTNESS_ID = 0x40; |
124 |
inline constexpr uint32_t COLOR_ID(uint32_t index) {return 0x38 | ((index) & 0x7);} |
125 |
inline constexpr uint32_t PROXIMITY_RING_ID(uint32_t index) {return 0x30 | ((index) & 0x7);} |
126 |
// Charging
|
127 |
const uint32_t REQUEST_CHARGING_OVER_PIN = 0x25; |
128 |
|
129 |
// Line following
|
130 |
const uint32_t TRANSMIT_LINE_FOLLOW_STATE= 0x19; |
131 |
const uint32_t SET_LINE_FOLLOW_MSG = 0x24; |
132 |
const uint32_t SET_LINE_FOLLOW_SPEED = 0x23; |
133 |
const uint32_t SET_KINEMATIC_CONST_ID = 0x22; |
134 |
const uint32_t TARGET_POSITION_ID = 0x21; |
135 |
const uint32_t ACTUAL_SPEED_ID = 0x20; |
136 |
const uint32_t SET_ODOMETRY_ID = 0x12; |
137 |
const uint32_t TARGET_RPM_ID = 0x11; |
138 |
const uint32_t TARGET_SPEED_ID = 0x10; |
139 |
const uint32_t POWER_STATUS_ID = 0x60; |
140 |
const uint32_t ROBOT_ID = 0x48; |
141 |
inline constexpr uint32_t SHELL_QUERY_ID(uint8_t index) {return 0x70 | ((index) & 0x7);} |
142 |
inline constexpr uint32_t SHELL_REPLY_ID(uint8_t index) {return 0x78 | ((index) & 0x7);} |
143 |
const uint32_t BROADCAST_SHUTDOWN = 0x80u; |
144 |
|
145 |
const uint32_t CALIBRATE_PROXIMITY_FLOOR = 0x81u; |
146 |
const uint32_t CALIBRATE_PROXIMITY_RING = 0x82u; |
147 |
|
148 |
const uint32_t SHUTDOWN_MAGIC = 0xAA55u; |
149 |
} |
150 |
|
151 |
namespace constants { |
152 |
|
153 |
/** \brief Amount of seconds per minute */
|
154 |
const int32_t secondsPerMinute = 60; |
155 |
|
156 |
/** \brief Amount of minutes per hour */
|
157 |
const int32_t minutesPerHour = 60; |
158 |
|
159 |
/** \brief Amount of milliseconds per second */
|
160 |
const int32_t millisecondsPerSecond = 1000; |
161 |
|
162 |
/* Several definitions of PI */
|
163 |
constexpr float PI = float(M_PI); /**< PI approximated with single precision floating point */ |
164 |
constexpr uint32_t PIe9 = (M_PI * 1000000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e9 */ |
165 |
constexpr uint32_t PIe6 = (M_PI * 1000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e6 */ |
166 |
constexpr uint16_t PIe3 = (M_PI * 1000) + 0.5f; /**< PI approximated with 16-bit integer and multiplied by factor 1e3 */ |
167 |
constexpr uint16_t PIe2 = (M_PI * 100) + 0.5f; /**< PI approximated with 16-bit integer and multiplied by factor 1e2 */ |
168 |
constexpr uint8_t PIe1 = (M_PI * 10) + 0.5f; /**< PI approximated with 8-bit integer and multiplied by factor 1e1 */ |
169 |
constexpr uint8_t PIe0 = (M_PI * 1) + 0.5f; /**< PI approximated with 8-bit integer and multiplied by factor 1e0 */ |
170 |
|
171 |
namespace LightRing { |
172 |
|
173 |
/** \brief Index of the top LEDs
|
174 |
*
|
175 |
* Top view of the AMiRo top LEDs and their indices:
|
176 |
* _______
|
177 |
* / 7 F 0 \
|
178 |
* |6 1|
|
179 |
* |5 2|
|
180 |
* \_4_B_3_/
|
181 |
*/
|
182 |
enum ledIndex : uint8_t {
|
183 |
LED_BL = 4, LED_BACK_LEFT = 4, LED_SSW = 4, LED_SOUTH_SOUTHWEST = 4, |
184 |
LED_LB = 5, LED_LEFT_BACK = 5, LED_WSW = 5, LED_WEST_SOUTHWEST = 5, |
185 |
LED_LF = 6, LED_LEFT_FRONT = 6, LED_WNW = 6, LED_WEST_NORTHWEST = 6, |
186 |
LED_FL = 7, LED_FRONT_LEFT = 7, LED_NNW = 7, LED_NORTH_NORTHWEST = 7, |
187 |
LED_FR = 0, LED_FRONT_RIGHT = 0, LED_NNE = 0, LED_NORTH_NORTHEAST = 0, |
188 |
LED_RF = 1, LED_RIGHT_FRONT = 1, LED_ENE = 1, LED_EAST_NORTHEAST = 1, |
189 |
LED_RB = 2, LED_RIGHT_BACK = 2, LED_ESE = 2, LED_EAST_SOUTHEAST = 2, |
190 |
LED_BR = 3, LED_BACK_RIGHT = 3, LED_SSE = 3, LED_SOUTH_SOUTHEAST = 3 |
191 |
}; |
192 |
} |
193 |
|
194 |
namespace DiWheelDrive { |
195 |
|
196 |
/** \brief Distance between wheels in meter */
|
197 |
const float wheelBaseDistanceSI = 0.069f; |
198 |
|
199 |
/** \brief Distance between wheels in micrometer */
|
200 |
const int32_t wheelBaseDistance = wheelBaseDistanceSI * 1e6; |
201 |
|
202 |
/** \brief Wheel diameter in meter */
|
203 |
const float wheelDiameterSI = 0.05571f; |
204 |
|
205 |
/** \brief Wheel diameter */
|
206 |
const int32_t wheelDiameter = wheelDiameterSI * 1e6; |
207 |
|
208 |
/** \brief Wheel circumference in meter */
|
209 |
const float wheelCircumferenceSI = M_PI * wheelDiameterSI; |
210 |
|
211 |
/** \brief Wheel circumference in micrometer */
|
212 |
const int32_t wheelCircumference = wheelCircumferenceSI * 1e6; |
213 |
|
214 |
/** \brief Wheel error in meter (topview left:0, right:1) */
|
215 |
const float wheelErrorSI[2] = {0.1, 0.1}; |
216 |
|
217 |
/** \brief Wheel error in meter (topview left:0, right:1) */
|
218 |
const int32_t wheelError[2] = {(int32_t) (wheelErrorSI[0] * 1e6), (int32_t) (wheelErrorSI[1] * 1e6)}; |
219 |
|
220 |
/** \brief Motor increments per revolution
|
221 |
*
|
222 |
* The increments are produced by 2 channels á 16
|
223 |
* pulses per revolution with respect to the rising
|
224 |
* and falling signal => 2*2*16 pulses/revolution.
|
225 |
* The gearbox is 22:1 => 2*2*16*22 pulses/revolution
|
226 |
*/
|
227 |
const int32_t incrementsPerRevolution = 2 * 2 * 16 * 22; |
228 |
|
229 |
/** \brief Index of the proximity sensors
|
230 |
*
|
231 |
* Bottom view of the AMiRo sensors and their indices (F:Front, B:Back):
|
232 |
* _____
|
233 |
* / 0F3 \
|
234 |
* |1 2|
|
235 |
* \__B__/
|
236 |
*/
|
237 |
enum proximitySensorIdx : uint8_t {
|
238 |
PROX_WL = 2, PROX_LW = 2, PROX_WHEEL_LEFT = 2, PROX_LEFT_WHEEL = 2, |
239 |
PROX_FL = 3, PROX_LF = 3, PROX_FRONT_LEFT = 3, PROX_LEFT_FRONT = 3, |
240 |
PROX_FR = 0, PROX_RF = 0, PROX_FRONT_RIGHT = 0, PROX_RIGHT_FRONT = 0, |
241 |
PROX_WR = 1, PROX_RW = 1, PROX_WHEEL_RIGHT = 1, PROX_RIGHT_WHEEL = 1, |
242 |
}; |
243 |
|
244 |
/** \brief Index of the wheels
|
245 |
*
|
246 |
* Top view of the AMiRo wheels and their indices (F:Front, B:Back):
|
247 |
* ____
|
248 |
* /| F |\
|
249 |
* |0 1|
|
250 |
* \|_B_|/
|
251 |
*/
|
252 |
enum wheelIdx : uint8_t {
|
253 |
WHEEL_L = 0, WHEEL_LEFT = 0, LEFT_WHEEL = 0, |
254 |
WHEEL_R = 1, WHEEL_RIGHT = 1, RIGHT_WHEEL = 1, |
255 |
}; |
256 |
|
257 |
|
258 |
} |
259 |
|
260 |
|
261 |
|
262 |
namespace PowerManagement { |
263 |
|
264 |
/** \brief Index of the proximity sensors
|
265 |
*
|
266 |
* Top view of the AMiRo sensors and their indices:
|
267 |
* _______
|
268 |
* / 3 F 4 \
|
269 |
* |2 5|
|
270 |
* |1 6|
|
271 |
* \_0_B_7_/
|
272 |
*/
|
273 |
enum proximitySensorIdx : uint8_t {
|
274 |
PROX_BL = 0, PROX_BACK_LEFT = 0, PROX_SSW = 0, PROX_SOUTH_SOUTHWEST = 0, |
275 |
PROX_LB = 1, PROX_LEFT_BACK = 1, PROX_WSW = 1, PROX_WEST_SOUTHWEST = 1, |
276 |
PROX_LF = 2, PROX_LEFT_FRONT = 2, PROX_WNW = 2, PROX_WEST_NORTHWEST = 2, |
277 |
PROX_FL = 3, PROX_FRONT_LEFT = 3, PROX_NNW = 3, PROX_NORTH_NORTHWEST = 3, |
278 |
PROX_FR = 4, PROX_FRONT_RIGHT = 4, PROX_NNE = 4, PROX_NORTH_NORTHEAST = 4, |
279 |
PROX_RF = 5, PROX_RIGHT_FRONT = 5, PROX_ENE = 5, PROX_EAST_NORTHEAST = 5, |
280 |
PROX_RB = 6, PROX_RIGHT_BACK = 6, PROX_ESE = 6, PROX_EAST_SOUTHEAST = 6, |
281 |
PROX_BR = 7, PROX_BACK_RIGHT = 7, PROX_SSE = 7, PROX_SOUTH_SOUTHEAST = 7 |
282 |
}; |
283 |
|
284 |
/** \brief Index of the batteries.
|
285 |
*
|
286 |
* The port names are printed on the PCB.
|
287 |
*/
|
288 |
enum batteryPortIdx : uint8_t {
|
289 |
BAT_P7 = 0, BAT_A = 0, |
290 |
BAT_P8 = 1, BAT_B = 1 |
291 |
}; |
292 |
|
293 |
/** \brief Index of the power monitors.
|
294 |
*/
|
295 |
enum powerMonitorIdx : uint8_t {
|
296 |
INA_VDD = 0,
|
297 |
INA_VIO18 = 1,
|
298 |
INA_VIO33 = 2,
|
299 |
INA_VIO42 = 3,
|
300 |
INA_VIO50 = 4
|
301 |
}; |
302 |
} |
303 |
|
304 |
} |
305 |
|
306 |
} |
307 |
|
308 |
#endif /* AMIRO_CONSTANTS_H_ */ |