adafruit_bno055 / utility / quaternion.h @ 5e9f001d
History | View | Annotate | Download (6.503 KB)
1 | 4bc1c0c1 | Kevin Townsend | /*
|
---|---|---|---|
2 | Inertial Measurement Unit Maths Library
|
||
3 | Copyright (C) 2013-2014 Samuel Cowen
|
||
4 | www.camelsoftware.com
|
||
5 | |||
6 | b5582106 | Gé Vissers | Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
|
7 | |||
8 | 4bc1c0c1 | Kevin Townsend | This program is free software: you can redistribute it and/or modify
|
9 | it under the terms of the GNU General Public License as published by
|
||
10 | the Free Software Foundation, either version 3 of the License, or
|
||
11 | (at your option) any later version.
|
||
12 | |||
13 | This program is distributed in the hope that it will be useful,
|
||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
16 | GNU General Public License for more details.
|
||
17 | |||
18 | You should have received a copy of the GNU General Public License
|
||
19 | along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
20 | */
|
||
21 | |||
22 | |||
23 | #ifndef IMUMATH_QUATERNION_HPP
|
||
24 | #define IMUMATH_QUATERNION_HPP
|
||
25 | |||
26 | #include <stdlib.h> |
||
27 | #include <string.h> |
||
28 | #include <stdint.h> |
||
29 | #include <math.h> |
||
30 | |||
31 | 4a94251b | Gé Vissers | #include "matrix.h" |
32 | 4bc1c0c1 | Kevin Townsend | |
33 | |||
34 | namespace imu |
||
35 | { |
||
36 | |||
37 | class Quaternion |
||
38 | { |
||
39 | public:
|
||
40 | 88b09bb5 | Gé Vissers | Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} |
41 | 4bc1c0c1 | Kevin Townsend | |
42 | 88b09bb5 | Gé Vissers | Quaternion(double w, double x, double y, double z): |
43 | _w(w), _x(x), _y(y), _z(z) {} |
||
44 | 4bc1c0c1 | Kevin Townsend | |
45 | 88b09bb5 | Gé Vissers | Quaternion(double w, Vector<3> vec): |
46 | _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {} |
||
47 | 4bc1c0c1 | Kevin Townsend | |
48 | double& w()
|
||
49 | { |
||
50 | return _w;
|
||
51 | } |
||
52 | double& x()
|
||
53 | { |
||
54 | return _x;
|
||
55 | } |
||
56 | double& y()
|
||
57 | { |
||
58 | return _y;
|
||
59 | } |
||
60 | double& z()
|
||
61 | { |
||
62 | return _z;
|
||
63 | } |
||
64 | |||
65 | 0695bf91 | Paul Du Bois (laptop) | double w() const |
66 | { |
||
67 | return _w;
|
||
68 | } |
||
69 | double x() const |
||
70 | { |
||
71 | return _x;
|
||
72 | } |
||
73 | double y() const |
||
74 | { |
||
75 | return _y;
|
||
76 | } |
||
77 | double z() const |
||
78 | { |
||
79 | return _z;
|
||
80 | } |
||
81 | |||
82 | double magnitude() const |
||
83 | 4bc1c0c1 | Kevin Townsend | { |
84 | 2b07acc9 | Gé Vissers | return sqrt(_w*_w + _x*_x + _y*_y + _z*_z);
|
85 | 4bc1c0c1 | Kevin Townsend | } |
86 | |||
87 | void normalize()
|
||
88 | { |
||
89 | 0695bf91 | Paul Du Bois (laptop) | double mag = magnitude();
|
90 | 4bc1c0c1 | Kevin Townsend | *this = this->scale(1/mag);
|
91 | } |
||
92 | |||
93 | 2b07acc9 | Gé Vissers | Quaternion conjugate() const
|
94 | 4bc1c0c1 | Kevin Townsend | { |
95 | 0ecc7129 | Gé Vissers | return Quaternion(_w, -_x, -_y, -_z);
|
96 | 4bc1c0c1 | Kevin Townsend | } |
97 | |||
98 | 2b07acc9 | Gé Vissers | void fromAxisAngle(const Vector<3>& axis, double theta) |
99 | 4bc1c0c1 | Kevin Townsend | { |
100 | _w = cos(theta/2);
|
||
101 | //only need to calculate sine of half theta once
|
||
102 | double sht = sin(theta/2); |
||
103 | _x = axis.x() * sht; |
||
104 | _y = axis.y() * sht; |
||
105 | _z = axis.z() * sht; |
||
106 | } |
||
107 | |||
108 | e8e79779 | Gé Vissers | void fromMatrix(const Matrix<3>& m) |
109 | 4bc1c0c1 | Kevin Townsend | { |
110 | e8e79779 | Gé Vissers | double tr = m.trace();
|
111 | 4bc1c0c1 | Kevin Townsend | |
112 | e8e79779 | Gé Vissers | double S;
|
113 | 4bc1c0c1 | Kevin Townsend | if (tr > 0) |
114 | { |
||
115 | S = sqrt(tr+1.0) * 2; |
||
116 | _w = 0.25 * S; |
||
117 | _x = (m(2, 1) - m(1, 2)) / S; |
||
118 | _y = (m(0, 2) - m(2, 0)) / S; |
||
119 | _z = (m(1, 0) - m(0, 1)) / S; |
||
120 | } |
||
121 | e8e79779 | Gé Vissers | else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) |
122 | 4bc1c0c1 | Kevin Townsend | { |
123 | S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; |
||
124 | _w = (m(2, 1) - m(1, 2)) / S; |
||
125 | _x = 0.25 * S; |
||
126 | _y = (m(0, 1) + m(1, 0)) / S; |
||
127 | _z = (m(0, 2) + m(2, 0)) / S; |
||
128 | } |
||
129 | e8e79779 | Gé Vissers | else if (m(1, 1) > m(2, 2)) |
130 | 4bc1c0c1 | Kevin Townsend | { |
131 | S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; |
||
132 | _w = (m(0, 2) - m(2, 0)) / S; |
||
133 | _x = (m(0, 1) + m(1, 0)) / S; |
||
134 | _y = 0.25 * S; |
||
135 | _z = (m(1, 2) + m(2, 1)) / S; |
||
136 | } |
||
137 | else
|
||
138 | { |
||
139 | S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; |
||
140 | _w = (m(1, 0) - m(0, 1)) / S; |
||
141 | _x = (m(0, 2) + m(2, 0)) / S; |
||
142 | _y = (m(1, 2) + m(2, 1)) / S; |
||
143 | _z = 0.25 * S; |
||
144 | } |
||
145 | } |
||
146 | |||
147 | 2dd31024 | Gé Vissers | void toAxisAngle(Vector<3>& axis, double& angle) const |
148 | 4bc1c0c1 | Kevin Townsend | { |
149 | 2dd31024 | Gé Vissers | double sqw = sqrt(1-_w*_w); |
150 | if (sqw == 0) //it's a singularity and divide by zero, avoid |
||
151 | 4bc1c0c1 | Kevin Townsend | return;
|
152 | |||
153 | angle = 2 * acos(_w);
|
||
154 | axis.x() = _x / sqw; |
||
155 | axis.y() = _y / sqw; |
||
156 | axis.z() = _z / sqw; |
||
157 | } |
||
158 | |||
159 | 0695bf91 | Paul Du Bois (laptop) | Matrix<3> toMatrix() const |
160 | 4bc1c0c1 | Kevin Townsend | { |
161 | Matrix<3> ret;
|
||
162 | 7ede6000 | Gé Vissers | ret.cell(0, 0) = 1 - 2*_y*_y - 2*_z*_z; |
163 | ret.cell(0, 1) = 2*_x*_y - 2*_w*_z; |
||
164 | ret.cell(0, 2) = 2*_x*_z + 2*_w*_y; |
||
165 | 4bc1c0c1 | Kevin Townsend | |
166 | 7ede6000 | Gé Vissers | ret.cell(1, 0) = 2*_x*_y + 2*_w*_z; |
167 | ret.cell(1, 1) = 1 - 2*_x*_x - 2*_z*_z; |
||
168 | ret.cell(1, 2) = 2*_y*_z - 2*_w*_x; |
||
169 | 4bc1c0c1 | Kevin Townsend | |
170 | 7ede6000 | Gé Vissers | ret.cell(2, 0) = 2*_x*_z - 2*_w*_y; |
171 | ret.cell(2, 1) = 2*_y*_z + 2*_w*_x; |
||
172 | ret.cell(2, 2) = 1 - 2*_x*_x - 2*_y*_y; |
||
173 | 4bc1c0c1 | Kevin Townsend | return ret;
|
174 | } |
||
175 | |||
176 | |||
177 | 0695bf91 | Paul Du Bois (laptop) | // Returns euler angles that represent the quaternion. Angles are
|
178 | // returned in rotation order and right-handed about the specified
|
||
179 | // axes:
|
||
180 | //
|
||
181 | // v[0] is applied 1st about z (ie, roll)
|
||
182 | // v[1] is applied 2nd about y (ie, pitch)
|
||
183 | // v[2] is applied 3rd about x (ie, yaw)
|
||
184 | //
|
||
185 | // Note that this means result.x() is not a rotation about x;
|
||
186 | // similarly for result.z().
|
||
187 | //
|
||
188 | Vector<3> toEuler() const |
||
189 | 4bc1c0c1 | Kevin Townsend | { |
190 | Vector<3> ret;
|
||
191 | double sqw = _w*_w;
|
||
192 | double sqx = _x*_x;
|
||
193 | double sqy = _y*_y;
|
||
194 | double sqz = _z*_z;
|
||
195 | |||
196 | ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); |
||
197 | ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); |
||
198 | ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); |
||
199 | |||
200 | return ret;
|
||
201 | } |
||
202 | |||
203 | 2dd31024 | Gé Vissers | Vector<3> toAngularVelocity(double dt) const |
204 | 4bc1c0c1 | Kevin Townsend | { |
205 | Vector<3> ret;
|
||
206 | Quaternion one(1.0, 0.0, 0.0, 0.0); |
||
207 | Quaternion delta = one - *this; |
||
208 | Quaternion r = (delta/dt); |
||
209 | r = r * 2;
|
||
210 | r = r * one; |
||
211 | |||
212 | ret.x() = r.x(); |
||
213 | ret.y() = r.y(); |
||
214 | ret.z() = r.z(); |
||
215 | return ret;
|
||
216 | } |
||
217 | |||
218 | 2b07acc9 | Gé Vissers | Vector<3> rotateVector(const Vector<2>& v) const |
219 | 4bc1c0c1 | Kevin Townsend | { |
220 | 2b07acc9 | Gé Vissers | return rotateVector(Vector<3>(v.x(), v.y())); |
221 | 4bc1c0c1 | Kevin Townsend | } |
222 | |||
223 | 2b07acc9 | Gé Vissers | Vector<3> rotateVector(const Vector<3>& v) const |
224 | 4bc1c0c1 | Kevin Townsend | { |
225 | 2b07acc9 | Gé Vissers | Vector<3> qv(_x, _y, _z);
|
226 | Vector<3> t = qv.cross(v) * 2.0; |
||
227 | return v + t*_w + qv.cross(t);
|
||
228 | 4bc1c0c1 | Kevin Townsend | } |
229 | |||
230 | |||
231 | 88b09bb5 | Gé Vissers | Quaternion operator*(const Quaternion& q) const |
232 | 4bc1c0c1 | Kevin Townsend | { |
233 | 0ecc7129 | Gé Vissers | return Quaternion(
|
234 | _w*q._w - _x*q._x - _y*q._y - _z*q._z, |
||
235 | _w*q._x + _x*q._w + _y*q._z - _z*q._y, |
||
236 | _w*q._y - _x*q._z + _y*q._w + _z*q._x, |
||
237 | _w*q._z + _x*q._y - _y*q._x + _z*q._w |
||
238 | ); |
||
239 | 4bc1c0c1 | Kevin Townsend | } |
240 | |||
241 | 88b09bb5 | Gé Vissers | Quaternion operator+(const Quaternion& q) const |
242 | 4bc1c0c1 | Kevin Townsend | { |
243 | 0ecc7129 | Gé Vissers | return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
|
244 | 4bc1c0c1 | Kevin Townsend | } |
245 | |||
246 | 88b09bb5 | Gé Vissers | Quaternion operator-(const Quaternion& q) const |
247 | 4bc1c0c1 | Kevin Townsend | { |
248 | 0ecc7129 | Gé Vissers | return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
|
249 | 4bc1c0c1 | Kevin Townsend | } |
250 | |||
251 | 88b09bb5 | Gé Vissers | Quaternion operator/(double scalar) const |
252 | 4bc1c0c1 | Kevin Townsend | { |
253 | 0ecc7129 | Gé Vissers | return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
|
254 | 4bc1c0c1 | Kevin Townsend | } |
255 | |||
256 | 88b09bb5 | Gé Vissers | Quaternion operator*(double scalar) const |
257 | 4bc1c0c1 | Kevin Townsend | { |
258 | 0ecc7129 | Gé Vissers | return scale(scalar);
|
259 | 4bc1c0c1 | Kevin Townsend | } |
260 | |||
261 | 88b09bb5 | Gé Vissers | Quaternion scale(double scalar) const |
262 | 0695bf91 | Paul Du Bois (laptop) | { |
263 | 0ecc7129 | Gé Vissers | return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
|
264 | 4bc1c0c1 | Kevin Townsend | } |
265 | |||
266 | private:
|
||
267 | double _w, _x, _y, _z;
|
||
268 | }; |
||
269 | |||
270 | 0ecc7129 | Gé Vissers | } // namespace
|
271 | 4bc1c0c1 | Kevin Townsend | |
272 | #endif |