Statistics
| Branch: | Tag: | Revision:

amiro-blt / Target / Modules / PowerManagement_1-1 / Boot / lib / stdperiphlib / CMSIS / Include / core_cmInstr.h @ 367c0652

History | View | Annotate | Download (16.8 KB)

1
/**************************************************************************//**
2
 * @file     core_cmInstr.h
3
 * @brief    CMSIS Cortex-M Core Instruction Access Header File
4
 * @version  V3.01
5
 * @date     06. March 2012
6
 *
7
 * @note
8
 * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
9
 *
10
 * @par
11
 * ARM Limited (ARM) is supplying this software for use with Cortex-M
12
 * processor based microcontrollers.  This file can be freely distributed
13
 * within development tools that are supporting such ARM based processors.
14
 *
15
 * @par
16
 * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
17
 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
18
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
19
 * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
20
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
21
 *
22
 ******************************************************************************/
23

    
24
#ifndef __CORE_CMINSTR_H
25
#define __CORE_CMINSTR_H
26

    
27

    
28
/* ##########################  Core Instruction Access  ######################### */
29
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
30
  Access to dedicated instructions
31
  @{
32
*/
33

    
34
#if   defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
35
/* ARM armcc specific functions */
36

    
37
#if (__ARMCC_VERSION < 400677)
38
  #error "Please use ARM Compiler Toolchain V4.0.677 or later!"
39
#endif
40

    
41

    
42
/** \brief  No Operation
43

44
    No Operation does nothing. This instruction can be used for code alignment purposes.
45
 */
46
#define __NOP                             __nop
47

    
48

    
49
/** \brief  Wait For Interrupt
50

51
    Wait For Interrupt is a hint instruction that suspends execution
52
    until one of a number of events occurs.
53
 */
54
#define __WFI                             __wfi
55

    
56

    
57
/** \brief  Wait For Event
58

59
    Wait For Event is a hint instruction that permits the processor to enter
60
    a low-power state until one of a number of events occurs.
61
 */
62
#define __WFE                             __wfe
63

    
64

    
65
/** \brief  Send Event
66

67
    Send Event is a hint instruction. It causes an event to be signaled to the CPU.
68
 */
69
#define __SEV                             __sev
70

    
71

    
72
/** \brief  Instruction Synchronization Barrier
73

74
    Instruction Synchronization Barrier flushes the pipeline in the processor,
75
    so that all instructions following the ISB are fetched from cache or
76
    memory, after the instruction has been completed.
77
 */
78
#define __ISB()                           __isb(0xF)
79

    
80

    
81
/** \brief  Data Synchronization Barrier
82

83
    This function acts as a special kind of Data Memory Barrier.
84
    It completes when all explicit memory accesses before this instruction complete.
85
 */
86
#define __DSB()                           __dsb(0xF)
87

    
88

    
89
/** \brief  Data Memory Barrier
90

91
    This function ensures the apparent order of the explicit memory operations before
92
    and after the instruction, without ensuring their completion.
93
 */
94
#define __DMB()                           __dmb(0xF)
95

    
96

    
97
/** \brief  Reverse byte order (32 bit)
98

99
    This function reverses the byte order in integer value.
100

101
    \param [in]    value  Value to reverse
102
    \return               Reversed value
103
 */
104
#define __REV                             __rev
105

    
106

    
107
/** \brief  Reverse byte order (16 bit)
108

109
    This function reverses the byte order in two unsigned short values.
110

111
    \param [in]    value  Value to reverse
112
    \return               Reversed value
113
 */
114
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
115
{
116
  rev16 r0, r0
117
  bx lr
118
}
119

    
120

    
121
/** \brief  Reverse byte order in signed short value
122

123
    This function reverses the byte order in a signed short value with sign extension to integer.
124

125
    \param [in]    value  Value to reverse
126
    \return               Reversed value
127
 */
128
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
129
{
130
  revsh r0, r0
131
  bx lr
132
}
133

    
134

    
135
/** \brief  Rotate Right in unsigned value (32 bit)
136

137
    This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
138

139
    \param [in]    value  Value to rotate
140
    \param [in]    value  Number of Bits to rotate
141
    \return               Rotated value
142
 */
143
#define __ROR                             __ror
144

    
145

    
146
#if       (__CORTEX_M >= 0x03)
147

    
148
/** \brief  Reverse bit order of value
149

150
    This function reverses the bit order of the given value.
151

152
    \param [in]    value  Value to reverse
153
    \return               Reversed value
154
 */
155
#define __RBIT                            __rbit
156

    
157

    
158
/** \brief  LDR Exclusive (8 bit)
159

160
    This function performs a exclusive LDR command for 8 bit value.
161

162
    \param [in]    ptr  Pointer to data
163
    \return             value of type uint8_t at (*ptr)
164
 */
165
#define __LDREXB(ptr)                     ((uint8_t ) __ldrex(ptr))
166

    
167

    
168
/** \brief  LDR Exclusive (16 bit)
169

170
    This function performs a exclusive LDR command for 16 bit values.
171

172
    \param [in]    ptr  Pointer to data
173
    \return        value of type uint16_t at (*ptr)
174
 */
175
#define __LDREXH(ptr)                     ((uint16_t) __ldrex(ptr))
176

    
177

    
178
/** \brief  LDR Exclusive (32 bit)
179

180
    This function performs a exclusive LDR command for 32 bit values.
181

182
    \param [in]    ptr  Pointer to data
183
    \return        value of type uint32_t at (*ptr)
184
 */
185
#define __LDREXW(ptr)                     ((uint32_t ) __ldrex(ptr))
186

    
187

    
188
/** \brief  STR Exclusive (8 bit)
189

190
    This function performs a exclusive STR command for 8 bit values.
191

192
    \param [in]  value  Value to store
193
    \param [in]    ptr  Pointer to location
194
    \return          0  Function succeeded
195
    \return          1  Function failed
196
 */
197
#define __STREXB(value, ptr)              __strex(value, ptr)
198

    
199

    
200
/** \brief  STR Exclusive (16 bit)
201

202
    This function performs a exclusive STR command for 16 bit values.
203

204
    \param [in]  value  Value to store
205
    \param [in]    ptr  Pointer to location
206
    \return          0  Function succeeded
207
    \return          1  Function failed
208
 */
209
#define __STREXH(value, ptr)              __strex(value, ptr)
210

    
211

    
212
/** \brief  STR Exclusive (32 bit)
213

214
    This function performs a exclusive STR command for 32 bit values.
215

216
    \param [in]  value  Value to store
217
    \param [in]    ptr  Pointer to location
218
    \return          0  Function succeeded
219
    \return          1  Function failed
220
 */
221
#define __STREXW(value, ptr)              __strex(value, ptr)
222

    
223

    
224
/** \brief  Remove the exclusive lock
225

226
    This function removes the exclusive lock which is created by LDREX.
227

228
 */
229
#define __CLREX                           __clrex
230

    
231

    
232
/** \brief  Signed Saturate
233

234
    This function saturates a signed value.
235

236
    \param [in]  value  Value to be saturated
237
    \param [in]    sat  Bit position to saturate to (1..32)
238
    \return             Saturated value
239
 */
240
#define __SSAT                            __ssat
241

    
242

    
243
/** \brief  Unsigned Saturate
244

245
    This function saturates an unsigned value.
246

247
    \param [in]  value  Value to be saturated
248
    \param [in]    sat  Bit position to saturate to (0..31)
249
    \return             Saturated value
250
 */
251
#define __USAT                            __usat
252

    
253

    
254
/** \brief  Count leading zeros
255

256
    This function counts the number of leading zeros of a data value.
257

258
    \param [in]  value  Value to count the leading zeros
259
    \return             number of leading zeros in value
260
 */
261
#define __CLZ                             __clz
262

    
263
#endif /* (__CORTEX_M >= 0x03) */
264

    
265

    
266

    
267
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
268
/* IAR iccarm specific functions */
269

    
270
#include <cmsis_iar.h>
271

    
272

    
273
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
274
/* TI CCS specific functions */
275

    
276
#include <cmsis_ccs.h>
277

    
278

    
279
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
280
/* GNU gcc specific functions */
281

    
282
/** \brief  No Operation
283

284
    No Operation does nothing. This instruction can be used for code alignment purposes.
285
 */
286
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
287
{
288
  __ASM volatile ("nop");
289
}
290

    
291

    
292
/** \brief  Wait For Interrupt
293

294
    Wait For Interrupt is a hint instruction that suspends execution
295
    until one of a number of events occurs.
296
 */
297
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
298
{
299
  __ASM volatile ("wfi");
300
}
301

    
302

    
303
/** \brief  Wait For Event
304

305
    Wait For Event is a hint instruction that permits the processor to enter
306
    a low-power state until one of a number of events occurs.
307
 */
308
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
309
{
310
  __ASM volatile ("wfe");
311
}
312

    
313

    
314
/** \brief  Send Event
315

316
    Send Event is a hint instruction. It causes an event to be signaled to the CPU.
317
 */
318
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
319
{
320
  __ASM volatile ("sev");
321
}
322

    
323

    
324
/** \brief  Instruction Synchronization Barrier
325

326
    Instruction Synchronization Barrier flushes the pipeline in the processor,
327
    so that all instructions following the ISB are fetched from cache or
328
    memory, after the instruction has been completed.
329
 */
330
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
331
{
332
  __ASM volatile ("isb");
333
}
334

    
335

    
336
/** \brief  Data Synchronization Barrier
337

338
    This function acts as a special kind of Data Memory Barrier.
339
    It completes when all explicit memory accesses before this instruction complete.
340
 */
341
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
342
{
343
  __ASM volatile ("dsb");
344
}
345

    
346

    
347
/** \brief  Data Memory Barrier
348

349
    This function ensures the apparent order of the explicit memory operations before
350
    and after the instruction, without ensuring their completion.
351
 */
352
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
353
{
354
  __ASM volatile ("dmb");
355
}
356

    
357

    
358
/** \brief  Reverse byte order (32 bit)
359

360
    This function reverses the byte order in integer value.
361

362
    \param [in]    value  Value to reverse
363
    \return               Reversed value
364
 */
365
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
366
{
367
  uint32_t result;
368

    
369
  __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
370
  return(result);
371
}
372

    
373

    
374
/** \brief  Reverse byte order (16 bit)
375

376
    This function reverses the byte order in two unsigned short values.
377

378
    \param [in]    value  Value to reverse
379
    \return               Reversed value
380
 */
381
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
382
{
383
  uint32_t result;
384

    
385
  __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
386
  return(result);
387
}
388

    
389

    
390
/** \brief  Reverse byte order in signed short value
391

392
    This function reverses the byte order in a signed short value with sign extension to integer.
393

394
    \param [in]    value  Value to reverse
395
    \return               Reversed value
396
 */
397
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
398
{
399
  uint32_t result;
400

    
401
  __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
402
  return(result);
403
}
404

    
405

    
406
/** \brief  Rotate Right in unsigned value (32 bit)
407

408
    This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
409

410
    \param [in]    value  Value to rotate
411
    \param [in]    value  Number of Bits to rotate
412
    \return               Rotated value
413
 */
414
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
415
{
416

    
417
  __ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );
418
  return(op1);
419
}
420

    
421

    
422
#if       (__CORTEX_M >= 0x03)
423

    
424
/** \brief  Reverse bit order of value
425

426
    This function reverses the bit order of the given value.
427

428
    \param [in]    value  Value to reverse
429
    \return               Reversed value
430
 */
431
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
432
{
433
  uint32_t result;
434

    
435
   __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
436
   return(result);
437
}
438

    
439

    
440
/** \brief  LDR Exclusive (8 bit)
441

442
    This function performs a exclusive LDR command for 8 bit value.
443

444
    \param [in]    ptr  Pointer to data
445
    \return             value of type uint8_t at (*ptr)
446
 */
447
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
448
{
449
    uint8_t result;
450

    
451
   __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
452
   return(result);
453
}
454

    
455

    
456
/** \brief  LDR Exclusive (16 bit)
457

458
    This function performs a exclusive LDR command for 16 bit values.
459

460
    \param [in]    ptr  Pointer to data
461
    \return        value of type uint16_t at (*ptr)
462
 */
463
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
464
{
465
    uint16_t result;
466

    
467
   __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
468
   return(result);
469
}
470

    
471

    
472
/** \brief  LDR Exclusive (32 bit)
473

474
    This function performs a exclusive LDR command for 32 bit values.
475

476
    \param [in]    ptr  Pointer to data
477
    \return        value of type uint32_t at (*ptr)
478
 */
479
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
480
{
481
    uint32_t result;
482

    
483
   __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
484
   return(result);
485
}
486

    
487

    
488
/** \brief  STR Exclusive (8 bit)
489

490
    This function performs a exclusive STR command for 8 bit values.
491

492
    \param [in]  value  Value to store
493
    \param [in]    ptr  Pointer to location
494
    \return          0  Function succeeded
495
    \return          1  Function failed
496
 */
497
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
498
{
499
   uint32_t result;
500

    
501
   __ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
502
   return(result);
503
}
504

    
505

    
506
/** \brief  STR Exclusive (16 bit)
507

508
    This function performs a exclusive STR command for 16 bit values.
509

510
    \param [in]  value  Value to store
511
    \param [in]    ptr  Pointer to location
512
    \return          0  Function succeeded
513
    \return          1  Function failed
514
 */
515
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
516
{
517
   uint32_t result;
518

    
519
   __ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
520
   return(result);
521
}
522

    
523

    
524
/** \brief  STR Exclusive (32 bit)
525

526
    This function performs a exclusive STR command for 32 bit values.
527

528
    \param [in]  value  Value to store
529
    \param [in]    ptr  Pointer to location
530
    \return          0  Function succeeded
531
    \return          1  Function failed
532
 */
533
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
534
{
535
   uint32_t result;
536

    
537
   __ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
538
   return(result);
539
}
540

    
541

    
542
/** \brief  Remove the exclusive lock
543

544
    This function removes the exclusive lock which is created by LDREX.
545

546
 */
547
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
548
{
549
  __ASM volatile ("clrex");
550
}
551

    
552

    
553
/** \brief  Signed Saturate
554

555
    This function saturates a signed value.
556

557
    \param [in]  value  Value to be saturated
558
    \param [in]    sat  Bit position to saturate to (1..32)
559
    \return             Saturated value
560
 */
561
#define __SSAT(ARG1,ARG2) \
562
({                          \
563
  uint32_t __RES, __ARG1 = (ARG1); \
564
  __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
565
  __RES; \
566
 })
567

    
568

    
569
/** \brief  Unsigned Saturate
570

571
    This function saturates an unsigned value.
572

573
    \param [in]  value  Value to be saturated
574
    \param [in]    sat  Bit position to saturate to (0..31)
575
    \return             Saturated value
576
 */
577
#define __USAT(ARG1,ARG2) \
578
({                          \
579
  uint32_t __RES, __ARG1 = (ARG1); \
580
  __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
581
  __RES; \
582
 })
583

    
584

    
585
/** \brief  Count leading zeros
586

587
    This function counts the number of leading zeros of a data value.
588

589
    \param [in]  value  Value to count the leading zeros
590
    \return             number of leading zeros in value
591
 */
592
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
593
{
594
  uint8_t result;
595

    
596
  __ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
597
  return(result);
598
}
599

    
600
#endif /* (__CORTEX_M >= 0x03) */
601

    
602

    
603

    
604

    
605
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
606
/* TASKING carm specific functions */
607

    
608
/*
609
 * The CMSIS functions have been implemented as intrinsics in the compiler.
610
 * Please use "carm -?i" to get an up to date list of all intrinsics,
611
 * Including the CMSIS ones.
612
 */
613

    
614
#endif
615

    
616
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
617

    
618
#endif /* __CORE_CMINSTR_H */