amiro-blt / Target / Source / helper.c @ ffb742da
History | View | Annotate | Download (10.488 KB)
1 | 69661903 | Thomas Schöpping | #include "helper.h" |
---|---|---|---|
2 | 2d379838 | Thomas Schöpping | |
3 | #include "blt_conf.h" |
||
4 | 69661903 | Thomas Schöpping | |
5 | /*
|
||
6 | * Initialized the system timer.
|
||
7 | */
|
||
8 | void saTimerInit(void) { |
||
9 | /* reset the timer configuration */
|
||
10 | saTimerReset(); |
||
11 | |||
12 | /* configure the systick frequency as a 1 ms event generator */
|
||
13 | SysTick->LOAD = BOOT_CPU_SYSTEM_SPEED_KHZ - 1;
|
||
14 | /* reset the current counter value */
|
||
15 | SysTick->VAL = 0;
|
||
16 | /* select core clock as source and enable the timer */
|
||
17 | SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk; |
||
18 | } |
||
19 | |||
20 | /*
|
||
21 | * Resets the systick status of the system timer.
|
||
22 | */
|
||
23 | void saTimerReset(void) { |
||
24 | /* set the systick's status and control register back into the default reset value */
|
||
25 | SysTick->CTRL = 0;
|
||
26 | } |
||
27 | |||
28 | /*
|
||
29 | * Updates the given timer variable.
|
||
30 | * More specifically, the given variable in incremented if a millisecond event occurred.
|
||
31 | */
|
||
32 | void saTimerUpdate(uint32_t* millisecond_counter) {
|
||
33 | /* check if the millisecond event occurred */
|
||
34 | if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0) |
||
35 | { |
||
36 | /* increment the millisecond counter */
|
||
37 | ++(*millisecond_counter); |
||
38 | } |
||
39 | |||
40 | return;
|
||
41 | } |
||
42 | |||
43 | /*
|
||
44 | * Actively polls the standalone timer until the specified time has passed.
|
||
45 | */
|
||
46 | void msleep(uint32_t ms)
|
||
47 | { |
||
48 | uint32_t current; |
||
49 | saTimerUpdate(¤t); |
||
50 | uint32_t end = current + ms; |
||
51 | |||
52 | while (current < end)
|
||
53 | { |
||
54 | saTimerUpdate(¤t); |
||
55 | } |
||
56 | |||
57 | return;
|
||
58 | } |
||
59 | |||
60 | /*
|
||
61 | * Actively reads the specified GPIO until it has the specified state.
|
||
62 | */
|
||
63 | void waitForSignal(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction state) {
|
||
64 | /* check whether the signal has been set */
|
||
65 | while (GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) {
|
||
66 | continue;
|
||
67 | } |
||
68 | return;
|
||
69 | } |
||
70 | |||
71 | /*
|
||
72 | * Actively reads the specified GPIO until it has the specified state, or the specified time has passed.
|
||
73 | */
|
||
74 | uint8_t waitForSignalTimeout(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, BitAction state, uint32_t timeout_ms) { |
||
75 | uint32_t current_time; |
||
76 | saTimerUpdate(¤t_time); |
||
77 | uint32_t timeout_time = current_time + timeout_ms; |
||
78 | while ((GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) &&
|
||
79 | (current_time < timeout_time)) { |
||
80 | saTimerUpdate(¤t_time); |
||
81 | } |
||
82 | if (current_time < timeout_time) {
|
||
83 | return 1; |
||
84 | } else {
|
||
85 | return 0; |
||
86 | } |
||
87 | } |
||
88 | |||
89 | /*
|
||
90 | * Turns the board LED or or off respectively.
|
||
91 | * If the argument is zero, the LED is switched off.
|
||
92 | * If the argument is not zero, the LED is switched on.
|
||
93 | */
|
||
94 | void setLed(uint8_t on) {
|
||
95 | |||
96 | #if defined(LED_GPIO) && defined(LED_PIN)
|
||
97 | if (on == 0) { |
||
98 | GPIO_SetBits(LED_GPIO, LED_PIN); |
||
99 | } else {
|
||
100 | GPIO_ResetBits(LED_GPIO, LED_PIN); |
||
101 | } |
||
102 | #endif
|
||
103 | |||
104 | return;
|
||
105 | } |
||
106 | |||
107 | /*
|
||
108 | * Makes the LED blink 'SOS' in morese code (... --- ...).
|
||
109 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
110 | */
|
||
111 | void blinkSOS(uint32_t loops) {
|
||
112 | /* initialize some variables and constants */
|
||
113 | enum State {BLINK_ERROR_S1,
|
||
114 | BLINK_ERROR_O, |
||
115 | BLINK_ERROR_S2, |
||
116 | BLINK_ERROR_BREAK |
||
117 | } state = BLINK_ERROR_S1; |
||
118 | uint8_t led = 0;
|
||
119 | uint32_t loop = 0;
|
||
120 | const uint32_t sigS = 50; |
||
121 | const uint32_t sigL = 200; |
||
122 | const uint32_t sigB = 100; |
||
123 | const uint32_t letterBreakTime = 200; |
||
124 | const uint32_t wordBreakTime = 1000; |
||
125 | uint32_t stateStartTime = 0;
|
||
126 | saTimerUpdate(&stateStartTime); |
||
127 | uint32_t currentTime = stateStartTime; |
||
128 | |||
129 | /* either loop the specified number, or infinitely */
|
||
130 | while (loop < loops || loops == 0) { |
||
131 | /* make the LED blink "SOS" (morse code: ... --- ...)*/
|
||
132 | led = 0;
|
||
133 | saTimerUpdate(¤tTime); |
||
134 | switch (state) {
|
||
135 | case BLINK_ERROR_S1:
|
||
136 | case BLINK_ERROR_S2:
|
||
137 | { |
||
138 | if (currentTime < stateStartTime + sigS) {
|
||
139 | led = 1;
|
||
140 | } else if (currentTime < stateStartTime + sigS+sigB) { |
||
141 | led = 0;
|
||
142 | } else if (currentTime < stateStartTime + sigS+sigB+sigS) { |
||
143 | led = 1;
|
||
144 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB) { |
||
145 | led = 0;
|
||
146 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS) { |
||
147 | led = 1;
|
||
148 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS+letterBreakTime) { |
||
149 | led = 0;
|
||
150 | } else {
|
||
151 | if (state == BLINK_ERROR_S1) {
|
||
152 | state = BLINK_ERROR_O; |
||
153 | } else {
|
||
154 | state = BLINK_ERROR_BREAK; |
||
155 | ++loop; |
||
156 | } |
||
157 | stateStartTime = currentTime; |
||
158 | } |
||
159 | break;
|
||
160 | } |
||
161 | case BLINK_ERROR_O:
|
||
162 | { |
||
163 | if (currentTime < stateStartTime + sigL) {
|
||
164 | led = 1;
|
||
165 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
166 | led = 0;
|
||
167 | } else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
||
168 | led = 1;
|
||
169 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
||
170 | led = 0;
|
||
171 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
||
172 | led = 1;
|
||
173 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
||
174 | led = 0;
|
||
175 | } else {
|
||
176 | state = BLINK_ERROR_S2; |
||
177 | stateStartTime = currentTime; |
||
178 | } |
||
179 | break;
|
||
180 | } |
||
181 | case BLINK_ERROR_BREAK:
|
||
182 | { |
||
183 | if (currentTime >= stateStartTime + wordBreakTime) {
|
||
184 | state = BLINK_ERROR_S1; |
||
185 | stateStartTime = currentTime; |
||
186 | } |
||
187 | break;
|
||
188 | } |
||
189 | } |
||
190 | |||
191 | setLed(led); |
||
192 | } |
||
193 | |||
194 | return;
|
||
195 | } |
||
196 | |||
197 | /*
|
||
198 | * Shortcut to make the LED blink SOS infinitely.
|
||
199 | */
|
||
200 | inline void blinkSOSinf() { |
||
201 | blinkSOS(0);
|
||
202 | return;
|
||
203 | } |
||
204 | |||
205 | /*
|
||
206 | * Makes the LED blink 'OK' in morese code (... -.-).
|
||
207 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
208 | */
|
||
209 | void blinkOK(uint32_t loops) {
|
||
210 | /* initialize some variables and constants */
|
||
211 | enum State {BLINK_SUCCESS_O,
|
||
212 | BLINK_SUCCESS_K, |
||
213 | BLINK_SUCCESS_BREAK |
||
214 | } state = BLINK_SUCCESS_O; |
||
215 | uint8_t led = 0;
|
||
216 | uint32_t loop = 0;
|
||
217 | const uint32_t sigS = 50; |
||
218 | const uint32_t sigL = 200; |
||
219 | const uint32_t sigB = 100; |
||
220 | const uint32_t letterBreakTime = 200; |
||
221 | const uint32_t wordBreakTime = 1000; |
||
222 | uint32_t stateStartTime = 0;
|
||
223 | saTimerUpdate(&stateStartTime); |
||
224 | uint32_t currentTime = stateStartTime; |
||
225 | |||
226 | /* either loop the specified number, or infinitely */
|
||
227 | while (loop < loops || loops == 0) |
||
228 | { |
||
229 | /* make the LED blink "OK" (morse code: --- -.-)*/
|
||
230 | led = 0;
|
||
231 | saTimerUpdate(¤tTime); |
||
232 | switch (state) {
|
||
233 | case BLINK_SUCCESS_O:
|
||
234 | { |
||
235 | if (currentTime < stateStartTime + sigL) {
|
||
236 | led = 1;
|
||
237 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
238 | led = 0;
|
||
239 | } else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
||
240 | led = 1;
|
||
241 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
||
242 | led = 0;
|
||
243 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
||
244 | led = 1;
|
||
245 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
||
246 | led = 0;
|
||
247 | } else {
|
||
248 | state = BLINK_SUCCESS_K; |
||
249 | stateStartTime = currentTime; |
||
250 | } |
||
251 | break;
|
||
252 | } |
||
253 | case BLINK_SUCCESS_K:
|
||
254 | { |
||
255 | if (currentTime < stateStartTime + sigL) {
|
||
256 | led = 1;
|
||
257 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
258 | led = 0;
|
||
259 | } else if (currentTime < stateStartTime + sigL+sigB+sigS) { |
||
260 | led = 1;
|
||
261 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB) { |
||
262 | led = 0;
|
||
263 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL) { |
||
264 | led = 1;
|
||
265 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL+letterBreakTime) { |
||
266 | led = 0;
|
||
267 | } else {
|
||
268 | state = BLINK_SUCCESS_BREAK; |
||
269 | ++loop; |
||
270 | stateStartTime = currentTime; |
||
271 | } |
||
272 | break;
|
||
273 | } |
||
274 | case BLINK_SUCCESS_BREAK:
|
||
275 | { |
||
276 | if (currentTime >= stateStartTime + wordBreakTime) {
|
||
277 | state = BLINK_SUCCESS_O; |
||
278 | stateStartTime = currentTime; |
||
279 | } |
||
280 | break;
|
||
281 | } |
||
282 | } |
||
283 | |||
284 | setLed(led); |
||
285 | } |
||
286 | |||
287 | return;
|
||
288 | } |
||
289 | |||
290 | /*
|
||
291 | * Shortcut to make the LED blink OK infinitely.
|
||
292 | */
|
||
293 | inline void blinkOKinf() { |
||
294 | blinkOK(0);
|
||
295 | return;
|
||
296 | } |
||
297 | |||
298 | /*
|
||
299 | * Makes the LED visualize the specified data.
|
||
300 | * Starting with the MSB of the first of the 'n' bytes, zeros are visualized as short flash and ones as long flash.
|
||
301 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
302 | */
|
||
303 | void visualizeData(uint8_t* data, uint32_t bytes, uint32_t loops) {
|
||
304 | /* initialize some variables and constants */
|
||
305 | enum State {BLINK_DATA_BIT,
|
||
306 | BLINK_DATA_BYTE_BREAK, |
||
307 | BLINK_DATA_LOOP_BREAK |
||
308 | } state = BLINK_DATA_BIT; |
||
309 | uint8_t led = 0;
|
||
310 | uint8_t mask = 0x80;
|
||
311 | uint32_t byte = 0;
|
||
312 | uint32_t loop = 0;
|
||
313 | const uint32_t sigS = 50; |
||
314 | const uint32_t sigL = 200; |
||
315 | const uint32_t interBitBreak = 500; |
||
316 | const uint32_t interByteBreak = 1000; |
||
317 | const uint32_t interLoopBreak = 2500; |
||
318 | uint32_t flash_dur = 0;
|
||
319 | uint32_t stateStartTime = 0;
|
||
320 | saTimerUpdate(&stateStartTime); |
||
321 | uint32_t currentTime = stateStartTime; |
||
322 | |||
323 | d54d2f07 | Thomas Schöpping | /* return immediately if the number of bytes is zero */
|
324 | if (bytes == 0) { |
||
325 | return;
|
||
326 | } |
||
327 | |||
328 | 69661903 | Thomas Schöpping | /* either loop the specified number, or infinetly */
|
329 | while (loop < loops || loops == 0) { |
||
330 | led = 0;
|
||
331 | saTimerUpdate(¤tTime); |
||
332 | switch (state) {
|
||
333 | case BLINK_DATA_BIT:
|
||
334 | { |
||
335 | if (data[byte] & mask) {
|
||
336 | flash_dur = sigL; |
||
337 | } else {
|
||
338 | flash_dur = sigS; |
||
339 | } |
||
340 | if (currentTime < stateStartTime + flash_dur) {
|
||
341 | led = 1;
|
||
342 | } else if (currentTime < stateStartTime + flash_dur+interBitBreak) { |
||
343 | led = 0;
|
||
344 | } else {
|
||
345 | mask = mask >> 1;
|
||
346 | if (mask > 0) { |
||
347 | state = BLINK_DATA_BIT; |
||
348 | } else if (byte < bytes-1) { |
||
349 | state = BLINK_DATA_BYTE_BREAK; |
||
350 | } else {
|
||
351 | state = BLINK_DATA_LOOP_BREAK; |
||
352 | ++loop; |
||
353 | } |
||
354 | stateStartTime = currentTime; |
||
355 | } |
||
356 | break;
|
||
357 | } |
||
358 | case BLINK_DATA_BYTE_BREAK:
|
||
359 | { |
||
360 | if (currentTime >= stateStartTime + interByteBreak) {
|
||
361 | mask = 0x80;
|
||
362 | state = BLINK_DATA_BIT; |
||
363 | ++byte; |
||
364 | stateStartTime = currentTime; |
||
365 | } |
||
366 | break;
|
||
367 | } |
||
368 | case BLINK_DATA_LOOP_BREAK:
|
||
369 | { |
||
370 | if (currentTime >= stateStartTime + interLoopBreak) {
|
||
371 | mask = 0x80;
|
||
372 | state = BLINK_DATA_BIT; |
||
373 | byte = 0;
|
||
374 | stateStartTime = currentTime; |
||
375 | } |
||
376 | break;
|
||
377 | } |
||
378 | } |
||
379 | |||
380 | setLed(led); |
||
381 | } |
||
382 | |||
383 | return;
|
||
384 | } |
||
385 | |||
386 | /*
|
||
387 | * Makes the LED visualize the specified byte.
|
||
388 | * Starting with the MSB, zeros are visualized as short flash and ones as long flash.
|
||
389 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
390 | */
|
||
391 | void visualizeByte(uint8_t byte, uint32_t loops) {
|
||
392 | visualizeData(&byte, 1, loops);
|
||
393 | return;
|
||
394 | } |