Statistics
| Branch: | Tag: | Revision:

amiro-lld / source / DW1000 / v1 / deca_instance_common_v1.c @ 26dead12

History | View | Annotate | Download (71.3 KB)

1
/*! ----------------------------------------------------------------------------
2
 *  @file    instance_common.c
3
 *  @brief   DecaWave application level common instance functions
4
 *
5
 * @attention
6
 *
7
 * Copyright 2015 (c) DecaWave Ltd, Dublin, Ireland.
8
 *
9
 * All rights reserved.
10
 *
11
 * @author DecaWave
12
 */
13

    
14
#include <alld_DW1000.h>
15

    
16
#if (defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1)) || defined(__DOXYGEN__)
17

    
18
#include "module.h"
19
#include <string.h>
20
#include <math.h>
21
#include <v1/deca_instance_v1.h>
22

    
23

    
24
/*! @brief Software defined configuration settings for RTLS applications */
25
/*! Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
26
instanceConfig_t chConfig[4] ={
27
                               //mode 1 - S1: 2 off, 3 off
28
                               {
29
                                .channelNumber = 2,             // channel
30
                                .preambleCode = 4,              // preambleCode
31
                                .pulseRepFreq = DWT_PRF_16M,    // prf
32
                                .dataRate = DWT_BR_110K,        // datarate
33
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
34
                                .pacSize = DWT_PAC32,           // pacSize
35
                                .nsSFD = 1,                     // non-standard SFD
36
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
37
                               },
38
                               //mode 2 - S1: 2 on, 3 off
39
                               {
40
                                .channelNumber = 2,            // channel
41
                                .preambleCode = 4,             // preambleCode
42
                                .pulseRepFreq = DWT_PRF_16M,   // prf
43
                                .dataRate = DWT_BR_6M8,        // datarate
44
                                .preambleLen = DWT_PLEN_128,   // preambleLength
45
                                .pacSize = DWT_PAC8,           // pacSize
46
                                .nsSFD = 0,                    // non-standard SFD
47
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
48
                               },
49
                               //mode 3 - S1: 2 off, 3 on
50
                               {
51
                                .channelNumber = 5,             // channel
52
                                .preambleCode = 3,              // preambleCode
53
                                .pulseRepFreq = DWT_PRF_16M,    // prf
54
                                .dataRate = DWT_BR_110K,        // datarate
55
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
56
                                .pacSize = DWT_PAC32,           // pacSize
57
                                .nsSFD = 1,                     // non-standard SFD
58
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
59
                               },
60
                               //mode 4 - S1: 2 on, 3 on
61
                               {
62
                                .channelNumber = 5,            // channel
63
                                .preambleCode = 3,             // preambleCode
64
                                .pulseRepFreq = DWT_PRF_16M,   // prf
65
                                .dataRate = DWT_BR_6M8,        // datarate
66
                                .preambleLen = DWT_PLEN_128,   // preambleLength
67
                                .pacSize = DWT_PAC8,           // pacSize
68
                                .nsSFD = 0,                    // non-standard SFD
69
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
70
                               }
71
};
72

    
73

    
74
/*! Slot and Superframe Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
75
sfConfig_t sfConfig[4] ={
76
                         //mode 1 - S1: 2 off, 3 off
77
                         {
78
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
79
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
80
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
81
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
82
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
83
                          .replyDly = (25000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
84
                         },
85
#if (DISCOVERY == 1)
86
                         //mode 2 - S1: 2 on, 3 off
87
                         {
88
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
89
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
90
                          .numSlots = (100),        //number of slots in the superframe (98 tag slots and 2 used for anchor to anchor ranging),
91
                          .sfPeriod = (10*100),  //in ms => 1000 ms frame means 1 Hz location rate
92
                          .pollSleepDly = (10*100), //tag period in ms (sleep time + ranging time)
93
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
94

    
95
                         },
96
#else
97
                         //mode 2 - S1: 2 on, 3 off
98
                         {
99
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
100
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
101
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
102
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
103
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
104
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
105
                         },
106
#endif
107
                         //mode 3 - S1: 2 off, 3 on
108
                         {
109
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
110
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
111
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
112
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
113
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
114
                          .replyDly = (20000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
115

    
116
                         },
117
                         //mode 4 - S1: 2 on, 3 on
118
                         {
119
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
120
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
121
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
122
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
123
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
124
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
125
                         }
126
};
127

    
128

    
129
// -------------------------------------------------------------------------------------------------------------------
130

    
131
//The table below specifies the default TX spectrum configuration parameters... this has been tuned for DW EVK hardware units
132
//the table is set for smart power - see below in the instance_config function how this is used when not using smart power
133
const tx_struct txSpectrumConfig[8] =
134
{
135
    //Channel 0 ----- this is just a place holder so the next array element is channel 1
136
    {
137
            0x0,   //0
138
            {
139
                    0x0, //0
140
                    0x0 //0
141
            }
142
    },
143
    //Channel 1
144
    {
145
            0xc9,   //PG_DELAY
146
            {
147
                    0x15355575, //16M prf power
148
                    0x07274767 //64M prf power
149
            }
150

    
151
    },
152
    //Channel 2
153
    {
154
            0xc2,   //PG_DELAY
155
            {
156
                    0x15355575, //16M prf power
157
                    0x07274767 //64M prf power
158
            }
159
    },
160
    //Channel 3
161
    {
162
            0xc5,   //PG_DELAY
163
            {
164
                    0x0f2f4f6f, //16M prf power
165
                    0x2b4b6b8b //64M prf power
166
            }
167
    },
168
    //Channel 4
169
    {
170
            0x95,   //PG_DELAY
171
            {
172
                    0x1f1f3f5f, //16M prf power
173
                    0x3a5a7a9a //64M prf power
174
            }
175
    },
176
    //Channel 5
177
    {
178
            0xc0,   //PG_DELAY
179
            {
180
                    0x0E082848, //16M prf power
181
                    0x25456585 //64M prf power
182
            }
183
    },
184
    //Channel 6 ----- this is just a place holder so the next array element is channel 7
185
    {
186
            0x0,   //0
187
            {
188
                    0x0, //0
189
                    0x0 //0
190
            }
191
    },
192
    //Channel 7
193
    {
194
            0x93,   //PG_DELAY
195
            {
196
                    0x32527292, //16M prf power
197
                    0x5171B1d1 //64M prf power
198
            }
199
    }
200
};
201

    
202
//these are default antenna delays for EVB1000, these can be used if there is no calibration data in the DW1000,
203
//or instead of the calibration data
204
const uint16_t rfDelays[2] = {
205
        (uint16_t) (((double)DWT_PRF_16M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS),//PRF 16
206
        (uint16_t) (((double)DWT_PRF_64M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS)
207
};
208

    
209
//these are default TREK Tag/Anchor antenna delays
210
const uint16_t rfDelaysTREK[2] = {
211
        (uint16_t) (((double)514.83f/ 2.0) * 1e-9 / DWT_TIME_UNITS),//channel 2
212
        (uint16_t) (((double)514.65f/ 2.0) * 1e-9 / DWT_TIME_UNITS) //channel 5
213
};
214

    
215

    
216
// -------------------------------------------------------------------------------------------------------------------
217
//      Data Definitions
218
// -------------------------------------------------------------------------------------------------------------------
219

    
220
instance_data_t instance_data[NUM_INST] ;
221

    
222
static double inst_tdist[MAX_TAG_LIST_SIZE] ;
223
static double inst_idist[MAX_ANCHOR_LIST_SIZE] ;
224
static double inst_idistraw[MAX_ANCHOR_LIST_SIZE] ;
225

    
226
instance_data_t instance_data[NUM_INST] ;
227

    
228
typedef struct __attribute__((packed))
229
{
230
    uint32_t      deviceID ;
231
    uint8_t       chan;               // added chan here - used in the reading of acc
232
    uint16_t      rfrxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
233
    uint16_t      rftxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
234
    uint32_t      antennaDly;         // antenna delay read from OTP 64 PRF value is in high 16 bits and 16M PRF in low 16 bits
235
    uint32_t      antennaCals[4];     // antenna delays for the TREKs (Anchor high 16-bits, Tag low 16-bits)
236
    uint32_t      txPowCfg[12];       // stores the Tx power configuration read from OTP (6 channels consecutively with PRF16 then 64, e.g. Ch 1 PRF16 is index 0 and 64 index 1)
237
    uint32_t      states[3] ;         //MP workaround debug states register
238
    uint8_t       statescount ;
239
    int           prfIndex ;
240
    uint32_t      ldoTune ;           //low 32 bits of LDO tune value
241
} platform_local_data_t ;
242

    
243
static platform_local_data_t platformLocalData ; // Static local device data
244

    
245
// -------------------------------------------------------------------------------------------------------------------
246
// Functions
247
// -------------------------------------------------------------------------------------------------------------------
248

    
249
// -------------------------------------------------------------------------------------------------------------------
250
// convert microseconds to device time
251
uint64_t convertmicrosectodevicetimeu (double microsecu){
252
  uint64_t dt;
253
  long double dtime;
254

    
255
  dtime = (long double)((microsecu / (double) DWT_TIME_UNITS) / 1e6);
256

    
257
  dt =  (uint64_t) (dtime) ;
258

    
259
  return dt;
260
}
261

    
262
double convertdevicetimetosec(int32_t dt){
263
  double f = 0;
264

    
265
  f =  dt * DWT_TIME_UNITS ;  // seconds #define TIME_UNITS          (1.0/499.2e6/128.0) = 15.65e-12
266

    
267
  return f ;
268
}
269

    
270
#pragma GCC optimize ("O3")
271
int reportTOF(int idx, uint32_t tofx){
272
  double distance ;
273
  double distance_to_correct;
274
  double tof ;
275
  int64_t tofi ;
276

    
277
  // check for negative results and accept them making them proper negative integers
278
  tofi = (int32_t) tofx ; // make it signed
279
  if (tofi > 0x7FFFFFFF){  // close up TOF may be negative
280
    tofi -= 0x80000000 ;  //
281
  }
282

    
283
  // convert to seconds (as floating point)
284
  tof = convertdevicetimetosec((int32_t)tofi) ;          //this is divided by 4 to get single time of flight
285
  inst_idistraw[idx] = distance = tof * SPEED_OF_LIGHT;
286

    
287
#if (CORRECT_RANGE_BIAS == 1)
288
  //for the 6.81Mb data rate we assume gating gain of 6dB is used,
289
  //thus a different range bias needs to be applied
290
  //if(inst->configData.dataRate == DWT_BR_6M8)
291
  if(instance_data[0].configData.smartPowerEn){
292
    //1.31 for channel 2 and 1.51 for channel 5
293
    if(instance_data[0].configData.chan == 5){
294
      distance_to_correct = distance/1.51;
295
    }
296
    else{   //channel 2
297
      distance_to_correct = distance/1.31;
298
    }
299
  }
300
  else{
301
    distance_to_correct = distance;
302
  }
303

    
304
  distance = distance - dwt_getrangebias(instance_data[0].configData.chan, (float) distance_to_correct, instance_data[0].configData.prf);
305
#endif
306

    
307
  if ((distance < 0) || (distance > 20000.000))    // discard any results less than <0 cm or >20 km
308
    return 0;
309

    
310
  inst_idist[idx] = distance;
311

    
312
  instance_data[0].longTermRangeCount++ ;                          // for computing a long term average
313

    
314
  return 1;
315
}// end of reportTOF
316

    
317
void setTagDist(int tidx, int aidx){
318
  inst_tdist[tidx] = inst_idist[aidx];
319
}
320

    
321
double getTagDist(int idx){
322
  return inst_tdist[idx];
323
}
324

    
325
void clearDistTable(int idx){
326
  inst_idistraw[idx] = 0;
327
  inst_idist[idx] = 0;
328
}
329

    
330
void instancecleardisttableall(void){
331
  int i;
332

    
333
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++)  {
334
    inst_idistraw[i] = 0xffff;
335
    inst_idist[i] = 0xffff;
336
  }
337
}
338

    
339
// -------------------------------------------------------------------------------------------------------------------
340
#if NUM_INST != 1
341
#error These functions assume one instance only
342
#else
343

    
344

    
345
// -------------------------------------------------------------------------------------------------------------------
346
// Set this instance role as the Tag, Anchor or Listener
347
void instancesetrole(int inst_mode){
348
  // assume instance 0, for this
349
  instance_data[0].mode =  (INST_MODE)inst_mode;                   // set the role
350
}
351

    
352
int instancegetrole(void){
353
  return (int)instance_data[0].mode;
354
}
355

    
356
int instancenewrange(void){
357
  int x = instance_data[0].newRange;
358
  instance_data[0].newRange = TOF_REPORT_NUL;
359
  return x;
360
}
361

    
362
int instancenewrangeancadd(void){
363
  return instance_data[0].newRangeAncAddress;
364
}
365

    
366
int instancenewrangetagadd(void){
367
  return instance_data[0].newRangeTagAddress;
368
}
369

    
370
uint32_t instancenewrangetim(void){
371
  return instance_data[0].newRangeTime;
372
}
373

    
374
// -------------------------------------------------------------------------------------------------------------------
375
// function to clear counts/averages/range values
376
//
377
void instanceclearcounts(void){
378
  int instance = 0 ;
379
  int i= 0 ;
380

    
381
  instance_data[instance].rxTimeouts = 0 ;
382

    
383
  dwt_configeventcounters(1); //enable and clear - NOTE: the counters are not preserved when in DEEP SLEEP
384

    
385
  instance_data[instance].frameSN = 0;
386

    
387
  instance_data[instance].longTermRangeCount  = 0;
388

    
389

    
390
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++){
391
    instance_data[instance].tofArray[i] = INVALID_TOF;
392
  }
393

    
394
  for(i=0; i<MAX_TAG_LIST_SIZE; i++){
395
    instance_data[instance].tof[i] = INVALID_TOF;
396
  }
397

    
398
} // end instanceclearcounts()
399

    
400

    
401
// -------------------------------------------------------------------------------------------------------------------
402
// function to initialise instance structures
403
//
404
// Returns 0 on success and -1 on error
405
int instance_init(DW1000Driver* drv){
406
  int instance = 0 ;
407
  int i;
408
  int result;
409

    
410
  instance_data[instance].mode =  ANCHOR;                                // assume listener,
411
  instance_data[instance].testAppState = TA_INIT ;
412
  instance_data[instance].instToSleep = FALSE;
413

    
414

    
415
  // Reset the IC (might be needed if not getting here from POWER ON)
416
  // ARM code: Remove soft reset here as using hard reset in the inittestapplication() in the main.c file
417
  //dwt_softreset();
418

    
419
  //this initialises DW1000 and uses specified configurations from OTP/ROM
420
  result = dwt_initialise(DWT_LOADUCODE, drv);
421

    
422
  //this is platform dependent - only program if DW EVK/EVB
423
  dwt_setleds(3) ; //configure the GPIOs which control the leds on EVBs
424

    
425
  if (DWT_SUCCESS != result){
426
    return (-1) ;   // device initialise has failed
427
  }
428

    
429

    
430
  instanceclearcounts() ;
431

    
432
  instance_data[instance].panID = 0xdeca ;
433

    
434
  instance_data[instance].wait4ack = 0;
435
  instance_data[instance].stopTimer = 0;
436
  instance_data[instance].instanceTimerEn = 0;
437

    
438
  instance_clearevents();
439

    
440
  //dwt_geteui(instance_data[instance].eui64);
441
  memset(instance_data[instance].eui64, 0, ADDR_BYTE_SIZE_L);
442

    
443
  instance_data[instance].tagSleepCorrection = 0;
444

    
445
//  dwt_setautorxreenable(0); //disable auto RX re-enable
446
  dwt_setdblrxbuffmode(0); //disable double RX buffer
447

    
448
  // if using auto CRC check (DWT_INT_RFCG and DWT_INT_RFCE) are used instead of DWT_INT_RDFR flag
449
  // other errors which need to be checked (as they disable receiver) are
450
  //dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_SFDT | DWT_INT_RFTO /*| DWT_INT_RXPTO*/), 1);
451
  dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_ARFE | DWT_INT_RFSL | DWT_INT_SFDT | DWT_INT_RPHE | DWT_INT_RFCE | DWT_INT_RFTO | DWT_INT_RXPTO), 1);
452

    
453
  dwt_setcallbacks(instance_txcallback, instance_rxcallback, instance_rxtimeoutcallback,instance_rxerrorcallback );
454

    
455
  instance_data[instance].monitor = 0;
456

    
457
  instance_data[instance].lateTX = 0;
458
  instance_data[instance].lateRX = 0;
459

    
460
  instance_data[instance].responseTO = -1; //initialise
461
  for(i=0; i<256; i++)  {
462
    instance_data[instance].rxResps[i] = -10;
463
  }
464

    
465
  instance_data[instance].delayedReplyTime = 0;
466

    
467
  return 0 ;
468
}
469

    
470
// -------------------------------------------------------------------------------------------------------------------
471
//
472
// Return the Device ID register value, enables higher level validation of physical device presence
473
//
474

    
475
uint32_t instancereaddeviceid(void){
476
  return dwt_readdevid() ;
477
}
478

    
479

    
480
// -------------------------------------------------------------------------------------------------------------------
481
//
482
// function to allow application configuration be passed into instance and affect underlying device operation
483
//
484
void instance_config(instanceConfig_t *config, sfConfig_t *sfConfig, DW1000Driver* drv){
485
  int instance = 0 ;
486
  uint32_t power = 0;
487
  uint8_t otprev ;
488

    
489
  instance_data[instance].configData.chan = config->channelNumber ;
490
  instance_data[instance].configData.rxCode =  config->preambleCode ;
491
  instance_data[instance].configData.txCode = config->preambleCode ;
492
  instance_data[instance].configData.prf = config->pulseRepFreq ;
493
  instance_data[instance].configData.dataRate = config->dataRate ;
494
  instance_data[instance].configData.txPreambLength = config->preambleLen ;
495
  instance_data[instance].configData.rxPAC = config->pacSize ;
496
  instance_data[instance].configData.nsSFD = config->nsSFD ;
497
  instance_data[instance].configData.phrMode = DWT_PHRMODE_STD ;
498
  instance_data[instance].configData.sfdTO = config->sfdTO;
499

    
500
  //the DW1000 will automatically use gating gain for frames < 1ms duration (i.e. 6.81Mbps data rate)
501
  //smartPowerEn should be set based on the frame length, but we can also use dtaa rate.
502
  if(instance_data[instance].configData.dataRate == DWT_BR_6M8)  {
503
    instance_data[instance].configData.smartPowerEn = 1;
504
  }
505
  else{
506
    instance_data[instance].configData.smartPowerEn = 0;
507
  }
508

    
509
  //configure the channel parameters
510
  dwt_configure(&instance_data[instance].configData) ;
511

    
512
  instance_data[instance].configTX.PGdly = txSpectrumConfig[config->channelNumber].PGdelay ;    //Default
513

    
514
  //firstly check if there are calibrated TX power value in the DW1000 OTP
515
  power = dwt_getotptxpower(config->pulseRepFreq, instance_data[instance].configData.chan);
516

    
517
  if((power == 0x0) || (power == 0xFFFFFFFF)) {    //if there are no calibrated values... need to use defaults
518
    power = txSpectrumConfig[config->channelNumber].txPwr[config->pulseRepFreq- DWT_PRF_16M];
519
  }
520

    
521
  //Configure TX power
522
  instance_data[instance].configTX.power = power;
523

    
524
  //configure the tx spectrum parameters (power and PG delay)
525
  dwt_configuretxrf(&instance_data[instance].configTX);
526

    
527
  otprev = dwt_otprevision() ;  // this revision tells us how OTP is programmed.
528

    
529
  if ((2 == otprev) || (3 == otprev))  {  // board is calibrated with TREK1000 with antenna delays set for each use case)
530
    uint8_t mode = (instance_data[instance].mode == ANCHOR ? 1 : 0);
531
    uint8_t chanindex = 0;
532

    
533
    instance_data[instance].txAntennaDelay
534
    = dwt_getTREKOTPantennadelay(mode,
535
                                 instance_data[instance].configData.chan,
536
                                 instance_data[instance].configData.dataRate) ;
537

    
538
    // if nothing was actually programmed then set a reasonable value anyway
539
    if ((instance_data[instance].txAntennaDelay == 0)
540
        || (instance_data[instance].txAntennaDelay == 0xffff)){
541
      if(instance_data[instance].configData.chan == 5){
542
        chanindex = 1;
543
      }
544

    
545
      instance_data[instance].txAntennaDelay = rfDelaysTREK[chanindex];
546
    }
547

    
548
  }
549
  else {  // assume it is older EVK1000 programming.
550
    //get the antenna delay that was read from the OTP calibration area
551
    instance_data[instance].txAntennaDelay = dwt_readantennadelay(config->pulseRepFreq) >> 1;
552

    
553
    // if nothing was actually programmed then set a reasonable value anyway
554
    if ((instance_data[instance].txAntennaDelay == 0)
555
        || (instance_data[instance].txAntennaDelay == 0xffff)){
556
      instance_data[instance].txAntennaDelay = rfDelays[config->pulseRepFreq - DWT_PRF_16M];
557
    }
558
  }
559

    
560
  // -------------------------------------------------------------------------------------------------------------------
561
  // set the antenna delay, we assume that the RX is the same as TX.
562
  dwt_setrxantennadelay(instance_data[instance].txAntennaDelay);
563
  dwt_settxantennadelay(instance_data[instance].txAntennaDelay);
564

    
565
  instance_data[instance].rxAntennaDelay = instance_data[instance].txAntennaDelay;
566

    
567
  if(config->preambleLen == DWT_PLEN_64)  {  //if preamble length is 64
568
    //reduce SPI to < 3MHz
569
    setHighSpeed_SPI(FALSE, drv);
570
    dwt_loadopsettabfromotp(0);
571
    //increase SPI to max
572
    setHighSpeed_SPI(TRUE, drv);
573
  }
574

    
575
  instancesettagsleepdelay(sfConfig->pollSleepDly); //set the Tag sleep time
576
  instance_data[instance].sframePeriod = sfConfig->sfPeriod;
577
  instance_data[instance].slotPeriod = sfConfig->slotPeriod;
578
  instance_data[instance].tagSleepRnd = sfConfig->slotPeriod;
579
  instance_data[instance].numSlots = sfConfig->numSlots;
580

    
581
  //last two slots are used for anchor to anchor ranging
582
  instance_data[instance].a0SlotTime = (instance_data[instance].numSlots-2) * instance_data[instance].slotPeriod;
583

    
584
  //set the default response delays
585
  instancesetreplydelay(sfConfig->replyDly);
586

    
587
}
588

    
589
// -------------------------------------------------------------------------------------------------------------------
590
// function to set the tag sleep time (in ms)
591
//
592
void instancesettagsleepdelay(int sleepdelay) {  //sleep in ms
593
  int instance = 0 ;
594
  instance_data[instance].tagSleepTime_ms = sleepdelay; //subtract the micro system delays (time it takes to switch states etc.)
595
}
596

    
597

    
598
int instancegetrnum(void) {  //get ranging number
599
  return instance_data[0].rangeNum;
600
}
601

    
602
int instancegetrnuma(int idx){  //get ranging number
603
  return instance_data[0].rangeNumA[idx];
604
}
605

    
606
int instancegetrnumanc(int idx){  //get ranging number
607
  return instance_data[0].rangeNumAAnc[idx];
608
}
609

    
610
int instancegetlcount(void) {  //get count of ranges used for calculation of lt avg
611
  int x = instance_data[0].longTermRangeCount;
612

    
613
  return (x);
614
}
615

    
616
double instancegetidist(int idx) {  //get instantaneous range
617
  double x ;
618

    
619
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
620

    
621
  x = inst_idist[idx];
622

    
623
  return (x);
624
}
625

    
626
double instancegetidistraw(int idx) { //get instantaneous range (uncorrected)
627
  double x ;
628

    
629
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
630

    
631
  x = inst_idistraw[idx];
632

    
633
  return (x);
634
}
635

    
636
int instancegetidist_mm(int idx) {  //get instantaneous range
637
  int x ;
638

    
639
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
640

    
641
  x = (int)(inst_idist[idx]*1000);
642

    
643
  return (x);
644
}
645

    
646
int instancegetidistraw_mm(int idx) {  //get instantaneous range (uncorrected)
647
  int x ;
648

    
649
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
650

    
651
  x = (int)(inst_idistraw[idx]*1000);
652

    
653
  return (x);
654
}
655

    
656
void instance_backtoanchor(instance_data_t *inst){
657
  //stay in RX and behave as anchor
658
  inst->testAppState = TA_RXE_WAIT ;
659
  inst->mode = ANCHOR ;
660
  dwt_setrxtimeout(0);
661
  dwt_setpreambledetecttimeout(0);
662
  dwt_setrxaftertxdelay(0);
663
}
664

    
665

    
666
#pragma GCC optimize ("O3")
667
void inst_processrxtimeout(instance_data_t *inst){
668

    
669
  //inst->responseTimeouts ++ ;
670
  inst->rxTimeouts ++ ;
671
  inst->done = INST_NOT_DONE_YET;
672

    
673
  if(inst->mode == ANCHOR) { //we did not receive the final - wait for next poll
674
    //only enable receiver when not using double buffering
675
    inst->testAppState = TA_RXE_WAIT ;              // wait for next frame
676
    dwt_setrxtimeout(0);
677
  }
678

    
679
  else if(inst->mode == TAG) {
680
    //if tag times out - no response (check if we are to send a final)
681
    //send the final only if it has received response from anchor 0
682
    if((inst->previousState == TA_TXPOLL_WAIT_SEND) && ((inst->rxResponseMask & 0x1) == 0)) {
683
      inst->instToSleep = TRUE ; //set sleep to TRUE so that tag will go to DEEP SLEEP before next ranging attempt
684
      inst->testAppState = TA_TXE_WAIT ;
685
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
686
    }
687
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error sending final - handle as timeout)
688
      dwt_forcetrxoff();        //this will clear all events
689
      inst->instToSleep = TRUE ;
690
      // initiate the re-transmission of the poll that was not responded to
691
      inst->testAppState = TA_TXE_WAIT ;
692
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
693
    }
694
    else {  //send the final
695
      // initiate the re-transmission of the poll that was not responded to
696
      inst->testAppState = TA_TXE_WAIT ;
697
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
698
    }
699

    
700
  }
701
  else {  //ANCHOR_RNG
702
    //no Response form the other anchor
703
    if(
704
        ((inst->previousState == TA_TXPOLL_WAIT_SEND)
705
            && ((A1_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x4) == 0)))
706
            ||
707
            ((inst->previousState == TA_TXPOLL_WAIT_SEND)
708
                && ((GATEWAY_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x2) == 0)))
709
    )  {
710
      instance_backtoanchor(inst);
711
    }
712
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error ending final - handle as timeout)
713
      instance_backtoanchor(inst);
714
    }
715
    else {  //send the final
716
      // initiate the re-transmission of the poll that was not responded to
717
      inst->testAppState = TA_TXE_WAIT ;
718
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
719
    }
720
  }
721

    
722
  //timeout - disable the radio (if using SW timeout the rx will not be off)
723
  //dwt_forcetrxoff() ;
724
}
725

    
726
//
727
// NB: This function is called from the (TX) interrupt handler
728
//
729
#pragma GCC optimize ("O3")
730
void instance_txcallback(const dwt_cb_data_t *txd){
731

    
732
  (void) txd;
733
  int instance = 0;
734
  uint8_t txTimeStamp[5] = {0, 0, 0, 0, 0};
735
//  uint8 txevent = txd->event;
736
  event_data_t dw_event;
737

    
738
  dw_event.uTimeStamp = portGetTickCnt();
739

    
740
  dwt_readtxtimestamp(txTimeStamp) ;
741
  dw_event.timeStamp32l = (uint32_t)txTimeStamp[0] + ((uint32_t)txTimeStamp[1] << 8) + ((uint32_t)txTimeStamp[2] << 16) + ((uint32_t)txTimeStamp[3] << 24);
742
  dw_event.timeStamp = txTimeStamp[4];
743
  dw_event.timeStamp <<= 32;
744
  dw_event.timeStamp += dw_event.timeStamp32l;
745
  dw_event.timeStamp32h = ((uint32_t)txTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8);
746

    
747
  instance_data[instance].stopTimer = 0;
748

    
749
  dw_event.rxLength = instance_data[instance].psduLength;
750
  dw_event.type =  0;
751
  dw_event.type_pend =  0;
752
  dw_event.type_save = DWT_SIG_TX_DONE;
753

    
754
  memcpy((uint8_t *)&dw_event.msgu.frame[0], (uint8_t *)&instance_data[instance].msg_f, instance_data[instance].psduLength);
755

    
756
  instance_putevent(dw_event, DWT_SIG_TX_DONE);
757

    
758
  instance_data[instance].txMsgCount++;
759

    
760
  instance_data[instance].monitor = 0;
761
}
762

    
763
/**
764
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
765
 * if it is time so send the final message, the callback will notify the application, else the receiver is
766
 * automatically re-enabled
767
 *
768
 * this function is only used for tag when ranging to other anchors
769
 */
770
uint8_t tagrxreenable(uint16_t sourceAddress){
771
  uint8_t type_pend = DWT_SIG_DW_IDLE;
772
  uint8_t anc = sourceAddress & 0x3;
773
  int instance = 0;
774

    
775
  switch(anc){
776
  //if we got Response from anchor 3 - this is the last expected response - send the final
777
  case 3:
778
    type_pend = DWT_SIG_DW_IDLE;
779
    break;
780

    
781
    //if we got Response from anchor 0, 1, or 2 - go back to wait for next anchor's response
782
  case 0:
783
  case 1:
784
  case 2:
785
  default:
786
    if(instance_data[instance].responseTO > 0) {  //can get here as result of error frame so need to check
787
      dwt_setrxtimeout((uint16_t)(instance_data[instance].fwtoTime_sy * instance_data[instance].responseTO)); //reconfigure the timeout
788
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
789
      type_pend = DWT_SIG_RX_PENDING ;
790
    }
791
    else //last response was not received (got error/frame was corrupt)
792
    {
793
      type_pend = DWT_SIG_DW_IDLE; //report timeout - send the final
794
    }
795
    break;
796
  }
797

    
798
  return type_pend;
799
}
800

    
801
/**
802
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
803
 * if it is time so send the final message, the callback will notify the application, else the receiver is
804
 * automatically re-enabled
805
 *
806
 * this function is only used for anchors (having a role of ANCHOR_RNG) when ranging to other anchors
807
 */
808
uint8_t ancsendfinalorrxreenable(uint16_t sourceAddress){
809
  uint8_t type_pend = DWT_SIG_DW_IDLE;
810
  uint8_t anc = sourceAddress & 0x3;
811
  int instance = 0;
812

    
813
  if(instance_data[instance].instanceAddress16 == GATEWAY_ANCHOR_ADDR) {
814
    switch(anc) {
815
    //if we got Response from anchor 1 - go back to wait for next anchor's response
816
    case 1:
817
      dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTime_sy); //reconfigure the timeout
818
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
819
      type_pend = DWT_SIG_RX_PENDING ;
820
      break;
821

    
822
      //if we got Response from anchor 2 - this is the last expected response - send the final
823
    case 2:
824
    default:
825
      type_pend = DWT_SIG_DW_IDLE;
826
      break;
827
    }
828
  }
829

    
830
  if(instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR){
831
    switch(anc)
832
    {
833
    //if we got Response from anchor 2 - this is the last expected response - send the final
834
    case 2:
835
    default:
836
      type_pend = DWT_SIG_DW_IDLE;
837
      break;
838
    }
839
  }
840
  return type_pend;
841
}
842

    
843
/**
844
 * @brief this function either enables the receiver (delayed)
845
 *
846
 **/
847
void ancenablerx(void){
848
  int instance = 0;
849
  //subtract preamble length
850
  dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime - instance_data[instance].fixedReplyDelayAncP) ;
851
  if(dwt_rxenable(DWT_START_RX_DELAYED)) {  //delayed rx
852
    //if the delayed RX failed - time has passed - do immediate enable
853
    //led_on(LED_PC9);
854
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy*2); //reconfigure the timeout before enable
855
    //longer timeout as we cannot do delayed receive... so receiver needs to stay on for longer
856
    dwt_rxenable(DWT_START_RX_IMMEDIATE);
857
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //restore the timeout for next RX enable
858
    instance_data[instance].lateRX++;
859
    //led_off(LED_PC9);
860
  }
861

    
862
}
863

    
864
/**
865
 * @brief this function either re-enables the receiver (delayed or immediate) or transmits the response frame
866
 *
867
 * @param the sourceAddress is the address of the sender of the current received frame
868
 * @param ancToAncTWR == 1 means that the anchor is ranging to another anchor, if == 0 then ranging to a tag
869
 *
870
 */
871
#pragma GCC optimize ("O0")
872
uint8_t anctxorrxreenable(uint16_t sourceAddress, int ancToAncTWR){
873
  uint8_t type_pend = DWT_SIG_DW_IDLE;
874
  int sendResp = 0;
875
  int instance = 0;
876

    
877
  if(instance_data[instance].responseTO == 0) {  //go back to RX without TO - ranging has finished. (wait for Final but no TO)
878
    dwt_setrxtimeout(0); //reconfigure the timeout
879
    dwt_setpreambledetecttimeout(0);
880
  }
881

    
882
  if((ancToAncTWR & 1) == 1)  {
883
    if(instance_data[instance].responseTO == 1) {  //if one response left to receive (send a response now)
884
      sendResp = 1;
885
    }
886
    //if A0 or A3 go back to RX as they do not send any responses when Anchor to Anchor ranging
887
    if((instance_data[instance].gatewayAnchor)
888
        || (instance_data[instance].shortAdd_idx == 3)) { //if this is anchor ID 3 do not reply to anchor poll
889
      dwt_setrxtimeout(0);
890
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
891
      return DWT_SIG_RX_PENDING ;
892
    }
893
  }
894

    
895
  //configure delayed reply time (this is incremented for each received frame) it is timed from Poll rx time
896
  instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8);
897

    
898
  //this checks if to send a frame
899
  if((((ancToAncTWR & 1) == 0) && ((instance_data[instance].responseTO + instance_data[instance].shortAdd_idx) == NUM_EXPECTED_RESPONSES)) //it's our turn to tx
900
      || (sendResp == 1)) {
901
    //led_on(LED_PC9);
902
    //response is expected
903
    instance_data[instance].wait4ack = DWT_RESPONSE_EXPECTED; //re has/will be re-enabled
904

    
905
    dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime) ;
906
    if(dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED)) {
907
      //if TX has failed - we need to re-enable RX for the next response or final reception...
908
      dwt_setrxaftertxdelay(0);
909
      instance_data[instance].wait4ack = 0; //clear the flag as the TX has failed the TRX is off
910
      instance_data[instance].lateTX++;
911
      instance_data[instance].delayedReplyTime += 2*(instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
912
      ancenablerx();
913
      type_pend = DWT_SIG_RX_PENDING ;
914
    }
915
    else {
916
      instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
917
      type_pend = DWT_SIG_TX_PENDING ; // exit this interrupt and notify the application/instance that TX is in progress.
918
      instance_data[instance].timeofTx = portGetTickCnt();
919
      instance_data[instance].monitor = 1;
920
    }
921
    //led_off(LED_PC9);
922
  }
923
  else {  //stay in receive
924
    if(sourceAddress == 0) { //we got here after RX error, as we don't need to TX, we just enable RX
925
      dwt_setrxtimeout(0);
926
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
927
    }
928
    else{
929
      //led_on(LED_PC9);
930
      ancenablerx();
931
      //led_off(LED_PC9);
932
    }
933

    
934
    type_pend = DWT_SIG_RX_PENDING ;
935
  }
936
  //if time to send a response
937

    
938
  return type_pend;
939
}
940

    
941
/**
942
 * @brief this function handles frame error event, it will either signal TO or re-enable the receiver
943
 */
944
void handle_error_unknownframe(event_data_t dw_event){
945
  int instance = 0;
946
  //re-enable the receiver (after error frames as we are not using auto re-enable
947
  //for ranging application rx error frame is same as TO - as we are not going to get the expected frame
948
  if(instance_data[instance].mode == ANCHOR){
949
    //if we are participating in the ranging (i.e. Poll was received)
950
    //and we get an rx error (in one of the responses)
951
    //need to consider this as a timeout as we could be sending our response next and
952
    //the applications needs to know to change the state
953
    //
954
    if(instance_data[instance].responseTO > 0){
955
      instance_data[instance].responseTO--;
956

    
957
      //send a response or re-enable rx
958
      dw_event.type_pend = anctxorrxreenable(0, 0);
959
      dw_event.type = 0;
960
      dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
961
      dw_event.rxLength = 0;
962

    
963
      instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
964
    }
965
    else{
966
      dwt_setrxtimeout(0); //reconfigure the timeout
967
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
968
    }
969
  }
970
  else if(instance_data[instance].mode == LISTENER){
971
    dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
972
  }
973
  else{
974
    instance_data[instance].responseTO--; //got something (need to reduce timeout (for remaining responses))
975

    
976
    dw_event.type_pend = tagrxreenable(0); //check if receiver will be re-enabled or it's time to send the final
977
    dw_event.type = 0;
978
    dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
979
    dw_event.rxLength = 0;
980

    
981
    instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
982
  }
983
}
984

    
985

    
986
/**
987
 * @brief this function prepares and writes the anchor to anchor response frame into the TX buffer
988
 * it is called after anchor receives a Poll from an anchor
989
 */
990
void ancprepareresponse2(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame){
991
  uint16_t frameLength = 0;
992
  uint8_t tof_idx = (sourceAddress) & 0x3 ;
993
  int instance = 0;
994

    
995
  instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC;
996
  //set the destination address (copy source as this is a reply)
997
  memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address)
998
  instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0];
999
  instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1];
1000
  // Write calculated TOF into response message (get the previous ToF+range number from that anchor)
1001
  memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tofAnc[tof_idx], 4);
1002
  instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumAAnc[tof_idx]; //get the previous range number
1003

    
1004
  instance_data[instance].rangeNumAAnc[tof_idx] = 0; //clear the entry
1005
  instance_data[instance].rangeNumAnc = frame[POLL_RNUM + fcode_index] ;
1006
  instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++;
1007

    
1008
  //set the delayed rx on time (the final message will be sent after this delay)
1009
  dwt_setrxaftertxdelay((uint32_t)instance_data[instance].ancRespRxDelay);  //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
1010

    
1011
  instance_data[instance].tagSleepCorrection = 0;
1012
  instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
1013
  instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
1014

    
1015
  instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP2; //message function code (specifies if message is a poll, response or other...)
1016

    
1017
  //write the TX data
1018
  dwt_writetxfctrl(frameLength, 0, 1);
1019
  dwt_writetxdata(frameLength, (uint8_t *)  &instance_data[instance].msg_f, 0) ;        // write the frame data
1020

    
1021
}
1022

    
1023
/**
1024
 * @brief this function prepares and writes the anchor to tag response frame into the TX buffer
1025
 * it is called after anchor receives a Poll from a tag
1026
 */
1027
void ancprepareresponse(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame, uint32_t uTimeStamp){
1028
  uint16_t frameLength = 0;
1029
  uint8_t tof_idx = (sourceAddress) & 0x7 ;
1030
  int instance = 0;
1031

    
1032
  instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC;
1033
  memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address)
1034
  instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0];
1035
  instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1];
1036
  // Write calculated TOF into response message (get the previous ToF+range number from that tag)
1037
  memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tof[tof_idx], 4);
1038
  instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumA[tof_idx]; //get the previous range number
1039

    
1040
  instance_data[instance].rangeNumA[tof_idx] = 0; //clear after copy above...
1041
  instance_data[instance].rangeNum = frame[POLL_RNUM+fcode_index] ;
1042
  instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++;
1043

    
1044
  //we have our range - update the own mask entry...
1045
  if(instance_data[instance].tof[tof_idx] != INVALID_TOF) { //check the last ToF entry is valid and copy into the current array
1046
    instance_data[instance].rxResponseMask = (uint8_t)(0x1 << instance_data[instance].shortAdd_idx);
1047
    instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = instance_data[instance].tof[tof_idx];
1048
  }
1049
  else        {  //reset response mask
1050
    instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = INVALID_TOF ;
1051
    instance_data[instance].rxResponseMask = 0;        //reset the mask of received responses when rx poll
1052
  }
1053
  //set the delayed rx on time (the final message will be sent after this delay)
1054
  dwt_setrxaftertxdelay((uint32_t)instance_data[instance].ancRespRxDelay);  //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
1055

    
1056
  //if this is gateway anchor - calculate the slot period correction
1057
  if(instance_data[instance].gatewayAnchor)  {
1058
    int error = 0;
1059
    int currentSlotTime = 0;
1060
    int expectedSlotTime = 0;
1061
    //find the time in the current superframe
1062
    currentSlotTime = uTimeStamp % instance_data[instance].sframePeriod;
1063

    
1064
    //this is the slot time the poll should be received in (Mask 0x07 for the 8 MAX tags we support in TREK)
1065
    expectedSlotTime = (sourceAddress&0xFF) * instance_data[instance].slotPeriod; //
1066

    
1067
    //error = expectedSlotTime - currentSlotTime
1068
    error = expectedSlotTime - currentSlotTime;
1069

    
1070
    if(error < (-(instance_data[instance].sframePeriod>>1))) { //if error is more negative than 0.5 period, add whole period to give up to 1.5 period sleep
1071
      instance_data[instance].tagSleepCorrection = (instance_data[instance].sframePeriod + error);
1072
    }
1073
    else { //the minimum Sleep time will be 0.5 period
1074
      instance_data[instance].tagSleepCorrection = error;
1075
    }
1076
    instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = instance_data[instance].tagSleepCorrection & 0xFF ;
1077
    instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = (instance_data[instance].tagSleepCorrection >> 8) & 0xFF;
1078
  }
1079
  else {
1080
    instance_data[instance].tagSleepCorrection = 0;
1081
    instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
1082
    instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
1083
  }
1084
  instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP; //message function code (specifies if message is a poll, response or other...)
1085

    
1086
  //write the TX data
1087
  dwt_writetxfctrl(frameLength, 0, 1);
1088
  dwt_writetxdata(frameLength, (uint8_t *)  &instance_data[instance].msg_f, 0) ;        // write the frame data
1089
}
1090

    
1091
/**
1092
 * @brief this is the receive event callback handler, the received event is processed and the instance either
1093
 * responds by sending a response frame or re-enables the receiver to await the next frame
1094
 * once the immediate action is taken care of the event is queued up for application to process
1095
 */
1096
#pragma GCC optimize ("O3")
1097
void instance_rxcallback(const dwt_cb_data_t *rxd){
1098
  int instance = 0;
1099
  uint8_t rxTimeStamp[5]  = {0, 0, 0, 0, 0};
1100

    
1101
  uint8_t rxd_event = 0;
1102
  uint8_t fcode_index  = 0;
1103
  uint8_t srcAddr_index = 0;
1104
  event_data_t dw_event;
1105

    
1106
  //microcontroller time at which we received the frame
1107
  dw_event.uTimeStamp = portGetTickCnt();
1108

    
1109
  //if we got a frame with a good CRC - RX OK
1110
  //  if(rxd->event == DWT_SIG_RX_OKAY) { // Timeout and error are handle separately in the driver itself
1111
  dw_event.rxLength = rxd->datalength;
1112

    
1113
  //need to process the frame control bytes to figure out what type of frame we have received
1114
  if(((rxd->fctrl[0] == 0x41) || (rxd->fctrl[0] == 0x61))
1115
      &&
1116
      ((rxd->fctrl[1] & 0xCC) == 0x88)) {  //short address
1117
    fcode_index = FRAME_CRTL_AND_ADDRESS_S; //function code is in first byte after source address
1118
    srcAddr_index = FRAME_CTRLP + ADDR_BYTE_SIZE_S;
1119
    rxd_event = DWT_SIG_RX_OKAY;
1120
  }
1121
  else {
1122
    rxd_event = SIG_RX_UNKNOWN; //not supported - all TREK1000 frames are short addressed
1123
  }
1124

    
1125
  //read RX timestamp
1126
  dwt_readrxtimestamp(rxTimeStamp) ;
1127
  dwt_readrxdata((uint8_t *)&dw_event.msgu.frame[0], rxd->datalength, 0);  // Read Data Frame
1128
  dw_event.timeStamp32l =  (uint32_t)rxTimeStamp[0] + ((uint32_t)rxTimeStamp[1] << 8) + ((uint32_t)rxTimeStamp[2] << 16) + ((uint32_t)rxTimeStamp[3] << 24);
1129
  dw_event.timeStamp = rxTimeStamp[4];
1130
  dw_event.timeStamp <<= 32;
1131
  dw_event.timeStamp += dw_event.timeStamp32l;
1132
  dw_event.timeStamp32h = ((uint32_t)rxTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8);
1133

    
1134
  dw_event.type = 0; //type will be added as part of adding to event queue
1135
  dw_event.type_save = rxd_event;
1136
  dw_event.type_pend = DWT_SIG_DW_IDLE;
1137

    
1138
  //if Listener then just report the received frame to the instance (application)
1139
  if(rxd_event == DWT_SIG_RX_OKAY) { //Process good/known frame types
1140
    uint16_t sourceAddress = (uint16_t)(((uint16_t)dw_event.msgu.frame[srcAddr_index+1]) << 8) + (uint16_t)(dw_event.msgu.frame[srcAddr_index]);
1141

    
1142
    if(instance_data[instance].mode != LISTENER)      {
1143
      if(instance_data[instance].mode == TAG) //if tag got a good frame - this is probably a response, but could also be some other non-ranging frame
1144
        //(although due to frame filtering this is limited as non-addressed frames are filtered out)
1145
      {
1146
        instance_data[instance].responseTO--; //got 1 more response or other RX frame - need to reduce timeout (for next response)
1147
      }
1148

    
1149
      //check if this is a TWR message (and also which one)
1150
      switch(dw_event.msgu.frame[fcode_index]){
1151
      //poll message from an anchor
1152
      case RTLS_DEMO_MSG_ANCH_POLL:{
1153
        //the anchor to anchor ranging poll frames are ignored by A0 and A3
1154
        if(instance_data[instance].gatewayAnchor || (instance_data[instance].instanceAddress16 > A2_ANCHOR_ADDR)){
1155
          //ignore poll from anchor 1 if gateway or anchor 3
1156
          //anchors 2 and 3 will never send polls
1157
          dw_event.type_pend = DWT_SIG_DW_IDLE ;
1158
          break;
1159
        }
1160

    
1161
        if(instance_data[instance].mode == TAG)  {  //tag should ignore any other Polls from anchors
1162
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1163
          handle_error_unknownframe(dw_event);
1164
          instance_data[instance].stopTimer = 1;
1165
          instance_data[instance].rxMsgCount++;
1166
          return;
1167
        }
1168

    
1169
        //update the response index and number of responses received tables
1170
        instance_data[instance].rxRespsIdx = (uint8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
1171
            + (((sourceAddress&0x3) + 8) << 4));
1172
        instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
1173
        //debug LED on
1174
        //                                                led_on(LED_PC9);
1175

    
1176
        //prepare the response and write it to the tx buffer
1177
        ancprepareresponse2(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0]);
1178

    
1179
        //A2 does not need timeout if ranging to A1
1180
        if(sourceAddress != A1_ANCHOR_ADDR){
1181
          dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
1182
        }
1183

    
1184
        //set the bast reply time (the actual will be Poll rx time + instance_data[0].fixedReplyDelayAnc)
1185
        instance_data[instance].delayedReplyTime = dw_event.timeStamp32h ;
1186
        instance_data[instance].responseTO = (instance_data[instance].instanceAddress16 - sourceAddress) & 0x3; //set number of expected responses
1187

    
1188
        dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+1);
1189

    
1190
        instance_data[instance].tofAnc[sourceAddress & 0x3] = INVALID_TOF; //clear ToF ..
1191
        //debug LED off
1192
        //                                                led_off(LED_PC9);
1193
        break;
1194
      }
1195

    
1196
      case RTLS_DEMO_MSG_TAG_POLL:{
1197
        if(instance_data[instance].mode == TAG) {  //tag should ignore any other Polls from tags
1198
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1199
          handle_error_unknownframe(dw_event);
1200
          instance_data[instance].stopTimer = 1;
1201
          instance_data[instance].rxMsgCount++;
1202
          return;
1203
        }
1204
        instance_data[instance].rxRespsIdx = (uint8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
1205
            + ((sourceAddress&0x7) << 4));
1206
        instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
1207

    
1208
        //prepare the response and write it to the tx buffer
1209
        ancprepareresponse(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0], dw_event.uTimeStamp);
1210

    
1211
        dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
1212

    
1213
        instance_data[0].delayedReplyTime = dw_event.timeStamp32h /*+ (instance_data[0].fixedReplyDelayAnc >> 8)*/ ;
1214
        instance_data[instance].responseTO = NUM_EXPECTED_RESPONSES; //set number of expected responses to 3 (from other anchors)
1215

    
1216
        dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+0);
1217

    
1218
        instance_data[instance].tof[sourceAddress & 0x7] = INVALID_TOF; //clear ToF ..
1219
      }
1220
      break;
1221

    
1222
      //we got a response from a "responder" (anchor)
1223
      case RTLS_DEMO_MSG_ANCH_RESP:
1224
      case RTLS_DEMO_MSG_ANCH_RESP2:{
1225

    
1226
        //we are a tag
1227
        if(instance_data[instance].mode == TAG){
1228
          uint8_t index ;
1229
          instance_data[instance].rxResps[instance_data[instance].rangeNum]++;
1230
          dw_event.type_pend = tagrxreenable(sourceAddress); //responseTO decremented above...
1231
          index = RRXT0 + 5*(sourceAddress & 0x3);
1232

    
1233
          instance_data[instance].rxResponseMask |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask
1234
          // Write Response RX time field of Final message
1235
          memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
1236

    
1237
        }
1238
        else if (instance_data[instance].mode == ANCHOR_RNG) {  //A0 and A1 only when ranging to other anchors
1239
          uint8_t index ;
1240
          instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++;
1241
          dw_event.type_pend = ancsendfinalorrxreenable(sourceAddress);
1242
          index = RRXT0 + 5*(sourceAddress & 0x3);
1243

    
1244
          instance_data[instance].rxResponseMaskAnc |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask
1245
          // Write Response RX time field of Final message
1246
          memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
1247
        }
1248
        else { //normal anchor mode
1249
          //got a response... (check if we got a Poll with the same range number as in this response)
1250
          if(RTLS_DEMO_MSG_ANCH_RESP == dw_event.msgu.frame[fcode_index]){
1251
            if((instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) //we got the poll else ignore this response
1252
                && (instance_data[instance].responseTO > 0)        ) {  //if responseTO == 0 we have already received all of the responses - meaning should not be here => error
1253
              instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++; //increment the number of responses received
1254
              instance_data[instance].responseTO--;
1255

    
1256
              //send a response or re-enable rx
1257
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+0);
1258
            }
1259
            else {  //like a timeout (error) ...
1260

    
1261
              //send a response or re-enable rx
1262
              dwt_setrxtimeout(0); //reconfigure the timeout
1263
              dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1264
              dw_event.type_pend = DWT_SIG_RX_PENDING ;
1265
            }
1266
          }
1267
          else {  //in anchor mode and got RTLS_DEMO_MSG_ANCH_RESP2
1268
            if((instance_data[instance].gatewayAnchor) &&
1269
                (instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]) == 2){ //got two responses A1 and A2 this is third (A2's to A1)
1270
              instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++;
1271
              instance_data[instance].rxResponseMaskAnc |= 0x8 ;
1272

    
1273
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+1); //re-enable the RX
1274
            }
1275
            //A2 got A1's response to A0 - send A2 response (but only if we got the Poll from A0)
1276
            else if((instance_data[instance].instanceAddress16 == A2_ANCHOR_ADDR) &&
1277
                (instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) ){
1278
              instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++;
1279
              instance_data[instance].responseTO--;
1280

    
1281
              dwt_setrxtimeout(0);
1282
              dwt_setrxaftertxdelay(0); //clear rx on delay as Final will come sooner than if we were waiting for next Response
1283
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 1);
1284
            }
1285
            else {  // if other anchor A1, A2, A3 .. ignore these responses when in ANCHOR mode
1286
              dwt_setrxtimeout(0); //reconfigure the timeout
1287
              dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1288
              dw_event.type_pend = DWT_SIG_RX_PENDING ;
1289
            }
1290
          }
1291
        }
1292

    
1293
      }
1294
      break;
1295

    
1296
      case RTLS_DEMO_MSG_TAG_FINAL:
1297
      case RTLS_DEMO_MSG_ANCH_FINAL:
1298
        if(instance_data[instance].mode == TAG) {  //tag should ignore any other Final from anchors
1299
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1300
          handle_error_unknownframe(dw_event);
1301
          instance_data[instance].stopTimer = 1;
1302
          instance_data[instance].rxMsgCount++;
1303
          return;
1304
        }
1305
      break;
1306
//        __attribute__ ((fallthrough));
1307

    
1308
        //if anchor fall into case below and process the frame
1309
      default: {  //process rx frame
1310
        dw_event.type_pend = DWT_SIG_DW_IDLE;
1311
      }
1312
      break;
1313

    
1314
      }
1315
    }//end of if not Listener mode
1316
    instance_data[instance].stopTimer = 1;
1317

    
1318
    instance_putevent(dw_event, rxd_event);
1319

    
1320
    instance_data[instance].rxMsgCount++;
1321
  }
1322
  else { //if (rxd_event == SIG_RX_UNKNOWN) //need to re-enable the rx (got unknown frame type)
1323
    handle_error_unknownframe(dw_event);
1324
  }
1325
  //  }
1326
}
1327

    
1328

    
1329
/*! Callback funtion for RX timeout (available from newer driver version) */
1330
#pragma GCC optimize ("O3")
1331
void instance_rxtimeoutcallback(const dwt_cb_data_t *rxd){
1332

    
1333
    (void) rxd;
1334
    event_data_t dw_event;
1335

    
1336
    int instance = 0;
1337

    
1338
    dw_event.type_pend = DWT_SIG_DW_IDLE;
1339

    
1340
    if(instance_data[instance].mode == ANCHOR) {
1341
        //check if anchor has received all of the responses from other anchors (it could have received only 1 or 2)
1342
        //it's timed out (re-enable rx or tx response)
1343
        if(instance_data[instance].responseTO > 0) {
1344
            instance_data[instance].responseTO--;
1345
            //send a response or re-enable rx
1346
            dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 6+0);
1347
//          Print_On_Uart("Re-enable RX in rxtimeout callback\r\n");
1348
        }
1349
    }
1350
    dw_event.type = 0;
1351
    dw_event.type_save = DWT_SIG_RX_TIMEOUT;
1352
    dw_event.rxLength = 0;
1353
    dw_event.timeStamp = 0;
1354
    dw_event.timeStamp32l = 0;
1355
    dw_event.timeStamp32h = 0;
1356

    
1357
    instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1358
//  printf("RX timeout while in %d\n", instance_data[instance].testAppState);
1359

    
1360
}
1361

    
1362

    
1363
/*! Callback funtion for RX error (available from newer driver version) */
1364
#pragma GCC optimize ("O3")
1365
void instance_rxerrorcallback(const dwt_cb_data_t *rxd) {
1366

    
1367
    (void) rxd;
1368
    event_data_t dw_event;
1369

    
1370
    dw_event.uTimeStamp = portGetTickCnt();
1371

    
1372
    handle_error_unknownframe(dw_event);
1373
}
1374

    
1375

    
1376

    
1377
#pragma GCC optimize ("O3")
1378
int instance_peekevent(void){
1379
  int instance = 0;
1380
  return instance_data[instance].dwevent[instance_data[instance].dweventPeek].type; //return the type of event that is in front of the queue
1381
}
1382

    
1383
#pragma GCC optimize ("O3")
1384
void instance_saveevent(event_data_t newevent, uint8_t etype){
1385
  int instance = 0;
1386

    
1387
  instance_data[instance].saved_dwevent = newevent;
1388
  instance_data[instance].saved_dwevent.type = etype;
1389
}
1390

    
1391
#pragma GCC optimize ("O3")
1392
event_data_t instance_getsavedevent(void){
1393
  int instance = 0;
1394

    
1395
  return instance_data[instance].saved_dwevent;
1396
}
1397

    
1398
#pragma GCC optimize ("O3")
1399
void instance_putevent(event_data_t newevent, uint8_t etype){
1400
  int instance = 0;
1401
  //newevent.eventtime = portGetTickCnt();
1402
  newevent.gotit = 0 ; //newevent.eventtimeclr = 0;
1403

    
1404
  //copy event
1405
  instance_data[instance].dwevent[instance_data[instance].dweventIdxIn] = newevent;
1406

    
1407
  //set type - this makes it a new event (making sure the event data is copied before event is set as new)
1408
  //to make sure that the get event function does not get an incomplete event
1409
  instance_data[instance].dwevent[instance_data[instance].dweventIdxIn].type = etype;
1410

    
1411
  instance_data[instance].dweventIdxIn++;
1412

    
1413
  if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxIn)
1414
  {
1415
    instance_data[instance].dweventIdxIn = 0;
1416
  }
1417
  //eventIncount++;
1418

    
1419
  //printf("put %d - in %d out %d @ %d\n", newevent.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
1420
}
1421

    
1422
event_data_t dw_event_g;
1423

    
1424
#pragma GCC optimize ("O3")
1425
event_data_t* instance_getevent(int x){
1426
  int instance = 0;
1427
  int indexOut = instance_data[instance].dweventIdxOut;
1428

    
1429
  //dw_event_g = instance_data[instance].dwevent[instance_data[instance].dweventCntOut]; //this holds any TX/RX events
1430

    
1431
  //memcpy(&dw_event_g, &instance_data[instance].dwevent[instance_data[instance].dweventCntOut], sizeof(event_data_t));
1432

    
1433
  if(instance_data[instance].dwevent[indexOut].type == 0) {  //exit with "no event"
1434
    dw_event_g.type = 0;
1435
    dw_event_g.type_save = 0;
1436
    return &dw_event_g;
1437
  }
1438

    
1439
  //copy the event
1440
  dw_event_g.type_save = instance_data[instance].dwevent[indexOut].type_save ;
1441
  dw_event_g.type_pend = instance_data[instance].dwevent[indexOut].type_pend ;
1442
  dw_event_g.rxLength = instance_data[instance].dwevent[indexOut].rxLength ;
1443
  dw_event_g.timeStamp = instance_data[instance].dwevent[indexOut].timeStamp ;
1444
  dw_event_g.timeStamp32l = instance_data[instance].dwevent[indexOut].timeStamp32l ;
1445
  dw_event_g.timeStamp32h = instance_data[instance].dwevent[indexOut].timeStamp32h ;
1446
  dw_event_g.uTimeStamp = instance_data[instance].dwevent[indexOut].uTimeStamp ;
1447
  //dw_event_g.eventtime = instance_data[instance].dwevent[indexOut].eventtime ;
1448
  //dw_event_g.eventtimeclr = instance_data[instance].dwevent[indexOut].eventtimeclr ;
1449
  //dw_event_g.gotit = instance_data[instance].dwevent[indexOut].gotit ;
1450

    
1451
  memcpy(&dw_event_g.msgu, &instance_data[instance].dwevent[indexOut].msgu, sizeof(instance_data[instance].dwevent[indexOut].msgu));
1452

    
1453
  dw_event_g.type = instance_data[instance].dwevent[indexOut].type ;
1454

    
1455

    
1456
  instance_data[instance].dwevent[indexOut].gotit = (uint8_t)x;
1457

    
1458
  //instance_data[instance].dwevent[indexOut].eventtimeclr = portGetTickCnt();
1459

    
1460
  instance_data[instance].dwevent[indexOut].type = 0; //clear the event
1461

    
1462
  instance_data[instance].dweventIdxOut++;
1463
  if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxOut){   //wrap the counter
1464
    instance_data[instance].dweventIdxOut = 0;
1465
  }
1466
  instance_data[instance].dweventPeek = instance_data[instance].dweventIdxOut; //set the new peek value
1467

    
1468
  //if(dw_event.type) printf("get %d - in %d out %d @ %d\n", dw_event.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
1469

    
1470
  //eventOutcount++;
1471

    
1472

    
1473
  return &dw_event_g;
1474
}
1475

    
1476
void instance_clearevents(void){
1477
  int i = 0;
1478
  int instance = 0;
1479

    
1480
  for(i=0; i<MAX_EVENT_NUMBER; i++) {
1481
    memset(&instance_data[instance].dwevent[i], 0, sizeof(event_data_t));
1482
  }
1483

    
1484
  instance_data[instance].dweventIdxIn = 0;
1485
  instance_data[instance].dweventIdxOut = 0;
1486
  instance_data[instance].dweventPeek = 0;
1487

    
1488
  //eventOutcount = 0;
1489
  //eventIncount = 0;
1490
}
1491

    
1492
// -------------------------------------------------------------------------------------------------------------------
1493
#pragma GCC optimize ("O3")
1494
int instance_run(void){
1495
  int instance = 0 ;
1496
  int done = INST_NOT_DONE_YET;
1497
  int message = instance_peekevent(); //get any of the received events from ISR
1498

    
1499

    
1500
  while(done == INST_NOT_DONE_YET){
1501
    //int state = instance_data[instance].testAppState;
1502
    done = testapprun(&instance_data[instance], message) ;                                               // run the communications application
1503

    
1504
    //we've processed message
1505
    message = 0;
1506
  }
1507

    
1508
  if(done == INST_DONE_WAIT_FOR_NEXT_EVENT_TO) { //we are in RX and need to timeout (Tag needs to send another poll if no Rx frame)
1509
    if(instance_data[instance].mode == TAG) { //Tag (is either in RX or sleeping)
1510
      int32_t nextPeriod ;
1511

    
1512
      // next period will be a positive number because correction is -0.5 to +1.5 periods, (and tagSleepTime_ms is the period)
1513
      nextPeriod = instance_data[instance].tagSleepRnd + instance_data[instance].tagSleepTime_ms + instance_data[instance].tagSleepCorrection;
1514

    
1515
      instance_data[instance].nextSleepPeriod = (uint32_t) nextPeriod ; //set timeout time, CAST the positive period to UINT for correct wrapping.
1516
      instance_data[instance].tagSleepCorrection2 = instance_data[instance].tagSleepCorrection;
1517
      instance_data[instance].tagSleepCorrection = 0; //clear the correction
1518
      instance_data[instance].instanceTimerEn = 1; //start timer
1519
    }
1520
    instance_data[instance].stopTimer = 0 ; //clear the flag - timer can run if instancetimer_en set (set above)
1521
    instance_data[instance].done = INST_NOT_DONE_YET;
1522
  }
1523

    
1524
  //check if timer has expired
1525
  if((instance_data[instance].instanceTimerEn == 1) && (instance_data[instance].stopTimer == 0))  {
1526
    if(instance_data[instance].mode == TAG)    {
1527
      if((portGetTickCnt() - instance_data[instance].instanceWakeTime) > instance_data[instance].nextSleepPeriod)      {
1528
        event_data_t dw_event;
1529
        instance_data[instance].instanceTimerEn = 0;
1530
        dw_event.rxLength = 0;
1531
        dw_event.type = 0;
1532
        dw_event.type_save = 0x80 | DWT_SIG_RX_TIMEOUT;
1533
        //printf("PC timeout DWT_SIG_RX_TIMEOUT\n");
1534
        instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1535
      }
1536
    }
1537
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging
1538
    else if(instance_data[instance].mode == ANCHOR)    {
1539
      uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod;
1540

    
1541
      if(instance_data[instance].gatewayAnchor) {
1542
        //if we are in the last slot - then A0 ranges to A1 and A2
1543
        if( slotTime >= instance_data[instance].a0SlotTime)        {
1544
          port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
1545
          //anchor0 sends poll to anchor1
1546
          instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
1547
          dwt_forcetrxoff(); //disable DW1000
1548
          instance_clearevents(); //clear any events
1549
          //change state to send a Poll
1550
          instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ;
1551
          instance_data[instance].msg_f.destAddr[0] = 0x1 ;
1552
          instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8);
1553
          instance_data[instance].instanceTimerEn = 0;
1554
          instance_data[instance].rangeNumAnc++;
1555
          port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
1556
        }
1557
      }
1558
      else if (instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR) { //A1 ranges to A2 in the 2nd half of last slot
1559
        if(portGetTickCnt() >= instance_data[instance].a1SlotTime) {
1560
          port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
1561
          //anchor1 sends poll to anchor2
1562
          instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
1563
          dwt_forcetrxoff(); //disable DW1000
1564
          instance_clearevents(); //clear any events
1565
          //change state to send a Poll
1566
          instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ;
1567
          instance_data[instance].msg_f.destAddr[0] = 0x2 ;
1568
          instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8);
1569

    
1570
          instance_data[instance].instanceTimerEn = 0;
1571
          //instance_data[instance].a1SlotTime = 0;
1572
          port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
1573
        }
1574
      }
1575
    }
1576
#endif
1577
  }
1578

    
1579
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging
1580
  else if (instance_data[instance].instanceTimerEn == 0){
1581
    if((instance_data[instance].mode == ANCHOR) && (instance_data[instance].gatewayAnchor)){
1582
      uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod;
1583
      //enable the timer in 1st slot
1584
      if(slotTime < instance_data[instance].slotPeriod){
1585
        instance_data[instance].instanceTimerEn = 1;
1586
      }
1587
    }
1588
  }
1589
#endif
1590
  return 0 ;
1591
}
1592

    
1593

    
1594
void instance_close(void){
1595
  //wake up device from low power mode
1596
  //NOTE - in the ARM  code just drop chip select for 200us
1597
  clear_SPI_chip_select();  //CS low
1598
  Sleep(1);   //200 us to wake up then waits 5ms for DW1000 XTAL to stabilise
1599
  set_SPI_chip_select();  //CS high
1600
  Sleep(5);
1601
  dwt_entersleepaftertx(0); // clear the "enter deep sleep after tx" bit
1602
  dwt_setinterrupt(0xFFFFFFFF, 0); //don't allow any interrupts
1603

    
1604
}
1605

    
1606

    
1607
void instance_notify_DW1000_inIDLE(int idle){
1608
  instance_data[0].dwIDLE = idle;
1609
}
1610

    
1611
void instanceconfigtxpower(uint32_t txpower){
1612
  instance_data[0].txPower = txpower ;
1613

    
1614
  instance_data[0].txPowerChanged = 1;
1615
}
1616

    
1617
void instancesettxpower(void){
1618
  if(instance_data[0].txPowerChanged == 1){
1619
    //Configure TX power
1620
    dwt_write32bitreg(0x1E, instance_data[0].txPower);
1621

    
1622
    instance_data[0].txPowerChanged = 0;
1623
  }
1624
}
1625

    
1626
void instanceconfigantennadelays(uint16_t tx, uint16_t rx){
1627
  instance_data[0].txAntennaDelay = tx ;
1628
  instance_data[0].rxAntennaDelay = rx ;
1629

    
1630
  instance_data[0].antennaDelayChanged = 1;
1631
}
1632

    
1633
void instancesetantennadelays(void){
1634
  if(instance_data[0].antennaDelayChanged == 1){
1635
    dwt_setrxantennadelay(instance_data[0].rxAntennaDelay);
1636
    dwt_settxantennadelay(instance_data[0].txAntennaDelay);
1637

    
1638
    instance_data[0].antennaDelayChanged = 0;
1639
  }
1640
}
1641

    
1642

    
1643
uint16_t instancetxantdly(void){
1644
  return instance_data[0].txAntennaDelay;
1645
}
1646

    
1647
uint16_t instancerxantdly(void){
1648
  return instance_data[0].rxAntennaDelay;
1649
}
1650

    
1651
uint8_t instancevalidranges(void){
1652
  uint8_t x = instance_data[0].rxResponseMaskReport;
1653
  instance_data[0].rxResponseMaskReport = 0; //reset mask as we have printed out the ToFs
1654
  return x;
1655
}
1656
#endif
1657

    
1658

    
1659
/*! The following Functions are added for user application (previously on the API )*/
1660

    
1661
/*! ------------------------------------------------------------------------------------------------------------------
1662
 * @fn dwt_getotptxpower()
1663
 *
1664
 * @brief This API function returns the tx power value read from OTP memory as part of initialisation
1665
 *
1666
 * input parameters
1667
 * @param prf   -   this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
1668
 * @param chan  -   this is the channel e.g. 1 to 7
1669
 *
1670
 * output parameters
1671
 *
1672
 * returns tx power value for a given PRF and channel
1673
 */
1674
uint32_t dwt_getotptxpower(uint8_t prf, uint8_t chan){
1675
    return platformLocalData.txPowCfg[(prf - DWT_PRF_16M) + (chan_idx[chan] * 2)];
1676
}
1677

    
1678
/*! ------------------------------------------------------------------------------------------------------------------
1679
 * @fn dwt_getTREKOTPantennadelay()
1680
 *
1681
 * @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
1682
 * Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
1683
 * The values of antenna delay are only valid for TREK use case modes.
1684
 *
1685
 * input parameters:
1686
 * @param anchor   - this is the mode (Tag or Anchor) if Tag set to 0, if Anchor set to 1
1687
 * @param chan   - this is the channel (1, 2, 3, 4, 5, 7)
1688
 * @param datarate   - this is the datarate DWT_BR_6M8, DWT_BR_110K or DWT_BR_850K
1689
 *
1690
 */
1691
uint16_t dwt_getTREKOTPantennadelay(uint8_t anchor, uint8_t chan, uint8_t datarate){
1692
    uint32_t dly = 0;
1693

    
1694
    // 32-bit antenna delay value previously read from OTP, high 16 bits is value for Anchor mode, low 16-bits for Tag mode
1695
    switch(chan){
1696
        case 2:
1697
            if(datarate == DWT_BR_6M8)
1698
                dly = platformLocalData.antennaCals[0];
1699
            else if(datarate == DWT_BR_110K)
1700
                dly = platformLocalData.antennaCals[1];
1701
            break;
1702
        case 5:
1703
            if(datarate == DWT_BR_6M8)
1704
                dly = platformLocalData.antennaCals[2];
1705
            else if(datarate == DWT_BR_110K)
1706
                dly = platformLocalData.antennaCals[3];
1707
            break;
1708
        default:
1709
            dly = 0;
1710
            break;
1711
    }
1712

    
1713
    return (dly >> (16*(anchor & 0x1))) & 0xFFFF;
1714
}
1715

    
1716
/*! ------------------------------------------------------------------------------------------------------------------
1717
 * @fn dwt_readantennadelay()
1718
 *
1719
 * @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
1720
 * Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
1721
 *
1722
 * input parameters:
1723
 * @param prf   -   this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
1724
 *
1725
 */
1726
uint16_t dwt_readantennadelay(uint8_t prf){
1727
    // 32-bit antenna delay value previously read from OTP, high 16 bits is value for 64 MHz PRF, low 16-bits for 16 MHz PRF
1728
    return (platformLocalData.antennaDly >> (16*(prf-DWT_PRF_16M))) & 0xFFFF;
1729
}
1730

    
1731

    
1732
/* ==========================================================
1733

1734
Notes:
1735

1736
Previously code handled multiple instances in a single console application
1737

1738
Now have changed it to do a single instance only. With minimal code changes...(i.e. kept [instance] index but it is always 0.
1739

1740
Windows application should call instance_init() once and then in the "main loop" call instance_run().
1741

1742
*/
1743

    
1744
#endif /* defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1) */