amiro-lld / drivers / DW1000 / v2 / decadriver / deca_device.c @ f0dd1ac4
History | View | Annotate | Download (142.18 KB)
1 | 22401187 | Thomas Schöpping | /*! ------------------------------------------------------------------------------------------------------------------
|
---|---|---|---|
2 | * @file deca_device.c
|
||
3 | * @brief Decawave device configuration and control functions
|
||
4 | *
|
||
5 | * @attention
|
||
6 | *
|
||
7 | * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland.
|
||
8 | *
|
||
9 | * All rights reserved.
|
||
10 | *
|
||
11 | */
|
||
12 | |||
13 | #include <assert.h> |
||
14 | #include <stdlib.h> |
||
15 | |||
16 | #include "deca_types.h" |
||
17 | #include "deca_param_types.h" |
||
18 | #include "deca_regs.h" |
||
19 | #include "deca_device_api.h" |
||
20 | |||
21 | // Defines for enable_clocks function
|
||
22 | #define FORCE_SYS_XTI 0 |
||
23 | #define ENABLE_ALL_SEQ 1 |
||
24 | #define FORCE_SYS_PLL 2 |
||
25 | #define READ_ACC_ON 7 |
||
26 | #define READ_ACC_OFF 8 |
||
27 | #define FORCE_OTP_ON 11 |
||
28 | #define FORCE_OTP_OFF 12 |
||
29 | #define FORCE_TX_PLL 13 |
||
30 | #define FORCE_LDE 14 |
||
31 | |||
32 | // Defines for ACK request bitmask in DATA and MAC COMMAND frame control (first byte) - Used to detect AAT bit wrongly set.
|
||
33 | #define FCTRL_ACK_REQ_MASK 0x20 |
||
34 | // Frame control maximum length in bytes.
|
||
35 | #define FCTRL_LEN_MAX 2 |
||
36 | |||
37 | // #define DWT_API_ERROR_CHECK // define so API checks config input parameters
|
||
38 | |||
39 | // -------------------------------------------------------------------------------------------------------------------
|
||
40 | //
|
||
41 | // Internal functions for controlling and configuring the device
|
||
42 | //
|
||
43 | // -------------------------------------------------------------------------------------------------------------------
|
||
44 | |||
45 | // Enable and Configure specified clocks
|
||
46 | void _dwt_enableclocks(int clocks) ; |
||
47 | // Configure the ucode (FP algorithm) parameters
|
||
48 | void _dwt_configlde(int prf); |
||
49 | // Load ucode from OTP/ROM
|
||
50 | void _dwt_loaducodefromrom(void); |
||
51 | // Read non-volatile memory
|
||
52 | uint32 _dwt_otpread(uint16 address); |
||
53 | // Program the non-volatile memory
|
||
54 | uint32 _dwt_otpprogword32(uint32 data, uint16 address); |
||
55 | // Upload the device configuration into always on memory
|
||
56 | void _dwt_aonarrayupload(void); |
||
57 | // -------------------------------------------------------------------------------------------------------------------
|
||
58 | |||
59 | /*!
|
||
60 | * Static data for DW1000 DecaWave Transceiver control
|
||
61 | */
|
||
62 | |||
63 | // -------------------------------------------------------------------------------------------------------------------
|
||
64 | // Structure to hold device data
|
||
65 | typedef struct |
||
66 | { |
||
67 | uint32 partID ; // IC Part ID - read during initialisation
|
||
68 | uint32 lotID ; // IC Lot ID - read during initialisation
|
||
69 | uint8 vBatP ; // IC V bat read during production and stored in OTP (Vmeas @ 3V3)
|
||
70 | uint8 tempP ; // IC V temp read during production and stored in OTP (Tmeas @ 23C)
|
||
71 | uint8 longFrames ; // Flag in non-standard long frame mode
|
||
72 | uint8 otprev ; // OTP revision number (read during initialisation)
|
||
73 | uint32 txFCTRL ; // Keep TX_FCTRL register config
|
||
74 | uint32 sysCFGreg ; // Local copy of system config register
|
||
75 | uint8 dblbuffon; // Double RX buffer mode flag
|
||
76 | uint8 wait4resp ; // wait4response was set with last TX start command
|
||
77 | uint16 sleep_mode; // Used for automatic reloading of LDO tune and microcode at wake-up
|
||
78 | uint16 otp_mask ; // Local copy of the OTP mask used in dwt_initialise call
|
||
79 | dwt_cb_data_t cbData; // Callback data structure
|
||
80 | dwt_cb_t cbTxDone; // Callback for TX confirmation event
|
||
81 | dwt_cb_t cbRxOk; // Callback for RX good frame event
|
||
82 | dwt_cb_t cbRxTo; // Callback for RX timeout events
|
||
83 | dwt_cb_t cbRxErr; // Callback for RX error events
|
||
84 | } dwt_local_data_t ; |
||
85 | |||
86 | static dwt_local_data_t dw1000local[DWT_NUM_DW_DEV] ; // Static local device data, can be an array to support multiple DW1000 testing applications/platforms |
||
87 | static dwt_local_data_t *pdw1000local = dw1000local ; // Static local data structure pointer |
||
88 | |||
89 | |||
90 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
91 | * @fn dwt_apiversion()
|
||
92 | *
|
||
93 | * @brief This function returns the version of the API as defined by DW1000_DRIVER_VERSION
|
||
94 | *
|
||
95 | * input parameters
|
||
96 | *
|
||
97 | * output parameters
|
||
98 | *
|
||
99 | * returns version (DW1000_DRIVER_VERSION)
|
||
100 | */
|
||
101 | int32 dwt_apiversion(void)
|
||
102 | { |
||
103 | return DW1000_DRIVER_VERSION ;
|
||
104 | } |
||
105 | |||
106 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
107 | * @fn dwt_setlocaldataptr()
|
||
108 | *
|
||
109 | * @brief This function sets the local data structure pointer to point to the element in the local array as given by the index.
|
||
110 | *
|
||
111 | * input parameters
|
||
112 | * @param index - selects the array element to point to. Must be within the array bounds, i.e. < DWT_NUM_DW_DEV
|
||
113 | *
|
||
114 | * output parameters
|
||
115 | *
|
||
116 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
117 | */
|
||
118 | int dwt_setlocaldataptr(unsigned int index) |
||
119 | { |
||
120 | // Check the index is within the array bounds
|
||
121 | if (DWT_NUM_DW_DEV <= index) // return error if index outside the array bounds |
||
122 | { |
||
123 | return DWT_ERROR ;
|
||
124 | } |
||
125 | |||
126 | pdw1000local = &dw1000local[index]; |
||
127 | |||
128 | return DWT_SUCCESS ;
|
||
129 | } |
||
130 | |||
131 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
132 | * @fn dwt_initialise()
|
||
133 | *
|
||
134 | * @brief This function initiates communications with the DW1000 transceiver
|
||
135 | * and reads its DEV_ID register (address 0x00) to verify the IC is one supported
|
||
136 | * by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it
|
||
137 | * does any initial once only device configurations needed for its use and initialises
|
||
138 | * as necessary any static data items belonging to this low-level driver.
|
||
139 | *
|
||
140 | * This function does not need to be called after DW1000 device is woken up from DEEPSLEEP,
|
||
141 | * the device will preserve register values e.g. LDO, UCODE, XTAL. However if needed this
|
||
142 | * function can be called to initialise internal structure dw1000local[] if it has not been preserved
|
||
143 | * (e.g. if micro was in sleep and its RAM data (containing dw1000local structure was not preserved during sleep)
|
||
144 | *
|
||
145 | * NOTES:
|
||
146 | * 1. When DW1000 is powered on this function needs to be run before dwt_configuresleep,
|
||
147 | * also the SPI frequency has to be < 3MHz
|
||
148 | * 2. It reads and applies LDO tune and crystal trim values from OTP memory
|
||
149 | * 3. If accurate RX timestamping is needed microcode/LDE must be loaded
|
||
150 | *
|
||
151 | * input parameters
|
||
152 | * @param config - specifies what configuration to load
|
||
153 | * DWT_LOADNONE 0x00 - do not load any values from OTP memory
|
||
154 | * DWT_LOADUCODE 0x01 - load the LDE microcode from ROM - enable accurate RX timestamp
|
||
155 | * DWT_DW_WAKE_UP 0x02 - just initialise dw1000local[] values (e.g. DW1000 has woken up)
|
||
156 | * DWT_DW_WUP_NO_UCODE 0x04 - if microcode/LDE algorithm has not already been loaded (on power up) e.g. when LDE is not used
|
||
157 | * DWT_READ_OTP_PID 0x10 - read part ID from OTP
|
||
158 | * DWT_READ_OTP_LID 0x20 - read lot ID from OTP
|
||
159 | * DWT_READ_OTP_BAT 0x40 - read ref voltage from OTP
|
||
160 | * DWT_READ_OTP_TMP 0x80 - read ref temperature from OTP
|
||
161 | * output parameters
|
||
162 | *
|
||
163 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
164 | */
|
||
165 | // OTP addresses definitions
|
||
166 | #define LDOTUNE_ADDRESS (0x04) |
||
167 | #define PARTID_ADDRESS (0x06) |
||
168 | #define LOTID_ADDRESS (0x07) |
||
169 | #define VBAT_ADDRESS (0x08) |
||
170 | #define VTEMP_ADDRESS (0x09) |
||
171 | #define XTRIM_ADDRESS (0x1E) |
||
172 | |||
173 | int dwt_initialise(int config) |
||
174 | { |
||
175 | uint16 otp_xtaltrim_and_rev = 0;
|
||
176 | uint32 ldo_tune = 0;
|
||
177 | |||
178 | pdw1000local->dblbuffon = 0; // - set to 0 - meaning double buffer mode is off by default |
||
179 | pdw1000local->wait4resp = 0; // - set to 0 - meaning wait for response not active |
||
180 | pdw1000local->sleep_mode = 0; // - set to 0 - meaning sleep mode has not been configured |
||
181 | |||
182 | pdw1000local->cbTxDone = NULL;
|
||
183 | pdw1000local->cbRxOk = NULL;
|
||
184 | pdw1000local->cbRxTo = NULL;
|
||
185 | pdw1000local->cbRxErr = NULL;
|
||
186 | |||
187 | #if DWT_API_ERROR_CHECK
|
||
188 | pdw1000local->otp_mask = config ; // Save the READ_OTP config mask
|
||
189 | #endif
|
||
190 | |||
191 | // Read and validate device ID, return -1 if not recognised
|
||
192 | if (DWT_DEVICE_ID != dwt_readdevid()) // MP IC ONLY (i.e. DW1000) FOR THIS CODE |
||
193 | { |
||
194 | return DWT_ERROR ;
|
||
195 | } |
||
196 | |||
197 | if(!(DWT_DW_WAKE_UP & config)) // Don't reset the device if DWT_DW_WAKE_UP bit is set, e.g. when calling this API after wake up |
||
198 | { |
||
199 | dwt_softreset(); // Make sure the device is completely reset before starting initialisation
|
||
200 | } |
||
201 | |||
202 | if(!((DWT_DW_WAKE_UP & config) && ((DWT_READ_OTP_TMP | DWT_READ_OTP_BAT | DWT_READ_OTP_LID | DWT_READ_OTP_PID | DWT_DW_WUP_RD_OTPREV)& config)))
|
||
203 | { |
||
204 | _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read by _dwt_otpread are reliable
|
||
205 | } // when not reading from OTP, clocks don't need to change.
|
||
206 | |||
207 | // Configure the CPLL lock detect
|
||
208 | dwt_write8bitoffsetreg(EXT_SYNC_ID, EC_CTRL_OFFSET, EC_CTRL_PLLLCK); |
||
209 | |||
210 | // When DW1000 IC is initialised from power up, then the LDO value should be kicked from OTP, otherwise if this API is called after
|
||
211 | // DW1000 IC has been woken up (DWT_DW_WAKE_UP bit is set) this can be skipped as LDO would have already been automatically
|
||
212 | // kicked/loaded on wake up
|
||
213 | if(!(DWT_DW_WAKE_UP & config))
|
||
214 | { |
||
215 | // Load LDO tune from OTP and kick it if there is a value actually programmed.
|
||
216 | ldo_tune = _dwt_otpread(LDOTUNE_ADDRESS); |
||
217 | if((ldo_tune & 0xFF) != 0) |
||
218 | { |
||
219 | // Kick LDO tune
|
||
220 | dwt_write8bitoffsetreg(OTP_IF_ID, OTP_SF, OTP_SF_LDO_KICK); // Set load LDO kick bit
|
||
221 | pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; // LDO tune must be kicked at wake-up
|
||
222 | } |
||
223 | } |
||
224 | else
|
||
225 | { //if LDOTUNE reg contains value different from default it means it was kicked from OTP and thus set AON_WCFG_ONW_LLDO.
|
||
226 | if(dwt_read32bitoffsetreg(RF_CONF_ID, LDOTUNE) != LDOTUNE_DEFAULT)
|
||
227 | pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; |
||
228 | } |
||
229 | |||
230 | if((!(DWT_DW_WAKE_UP & config)) || ((DWT_DW_WAKE_UP & config) && (DWT_DW_WUP_RD_OTPREV & config)))
|
||
231 | { |
||
232 | // Read OTP revision number
|
||
233 | otp_xtaltrim_and_rev = _dwt_otpread(XTRIM_ADDRESS) & 0xffff; // Read 32 bit value, XTAL trim val is in low octet-0 (5 bits) |
||
234 | pdw1000local->otprev = (otp_xtaltrim_and_rev >> 8) & 0xff; // OTP revision is the next byte |
||
235 | } |
||
236 | else
|
||
237 | pdw1000local->otprev = 0; // If OTP valuse are not used, if this API is called after DW1000 IC has been woken up |
||
238 | // (DWT_DW_WAKE_UP bit is set), set otprev to 0
|
||
239 | |||
240 | if(!(DWT_DW_WAKE_UP & config))
|
||
241 | { |
||
242 | // XTAL trim value is set in OTP for DW1000 module and EVK/TREK boards but that might not be the case in a custom design
|
||
243 | if ((otp_xtaltrim_and_rev & 0x1F) == 0) // A value of 0 means that the crystal has not been trimmed |
||
244 | { |
||
245 | otp_xtaltrim_and_rev = FS_XTALT_MIDRANGE ; // Set to mid-range if no calibration value inside
|
||
246 | } |
||
247 | // Configure XTAL trim
|
||
248 | dwt_setxtaltrim((uint8)otp_xtaltrim_and_rev); |
||
249 | } |
||
250 | |||
251 | if(DWT_READ_OTP_PID & config)
|
||
252 | { |
||
253 | // Load Part from OTP
|
||
254 | pdw1000local->partID = _dwt_otpread(PARTID_ADDRESS); |
||
255 | } |
||
256 | else
|
||
257 | { |
||
258 | pdw1000local->partID = 0;
|
||
259 | } |
||
260 | |||
261 | if(DWT_READ_OTP_LID & config)
|
||
262 | { |
||
263 | // Load Lot ID from OTP
|
||
264 | pdw1000local->lotID = _dwt_otpread(LOTID_ADDRESS); |
||
265 | } |
||
266 | else
|
||
267 | { |
||
268 | pdw1000local->lotID = 0;
|
||
269 | } |
||
270 | |||
271 | if(DWT_READ_OTP_BAT & config)
|
||
272 | { |
||
273 | // Load VBAT from OTP
|
||
274 | pdw1000local->vBatP = _dwt_otpread(VBAT_ADDRESS) & 0xff;
|
||
275 | } |
||
276 | else
|
||
277 | { |
||
278 | pdw1000local->vBatP = 0;
|
||
279 | } |
||
280 | |||
281 | if(DWT_READ_OTP_TMP & config)
|
||
282 | { |
||
283 | // Load TEMP from OTP
|
||
284 | pdw1000local->tempP = _dwt_otpread(VTEMP_ADDRESS) & 0xff;
|
||
285 | } |
||
286 | else
|
||
287 | { |
||
288 | pdw1000local->tempP = 0;
|
||
289 | } |
||
290 | |||
291 | // Load leading edge detect code (LDE/microcode)
|
||
292 | if(!(DWT_DW_WAKE_UP & config))
|
||
293 | { |
||
294 | if(DWT_LOADUCODE & config)
|
||
295 | { |
||
296 | _dwt_loaducodefromrom(); |
||
297 | pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; // microcode must be loaded at wake-up if loaded on initialisation
|
||
298 | } |
||
299 | else // Should disable the LDERUN bit enable if LDE has not been loaded |
||
300 | { |
||
301 | uint16 rega = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1) ;
|
||
302 | rega &= 0xFDFF ; // Clear LDERUN bit |
||
303 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1, rega) ;
|
||
304 | } |
||
305 | } |
||
306 | else //if DWT_DW_WUP_NO_UCODE is set then assume that the UCODE was loaded from ROM (i.e. DWT_LOADUCODE was set on power up), |
||
307 | { //thus set AON_WCFG_ONW_LLDE, otherwise don't set the AON_WCFG_ONW_LLDE bit in the sleep_mode configuration
|
||
308 | if((DWT_DW_WUP_NO_UCODE & config) == 0) |
||
309 | { |
||
310 | pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; |
||
311 | } |
||
312 | } |
||
313 | |||
314 | _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
||
315 | |||
316 | // The 3 bits in AON CFG1 register must be cleared to ensure proper operation of the DW1000 in DEEPSLEEP mode.
|
||
317 | dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
||
318 | |||
319 | // Read system register / store local copy
|
||
320 | pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
||
321 | pdw1000local->longFrames = (pdw1000local->sysCFGreg & SYS_CFG_PHR_MODE_11) >> SYS_CFG_PHR_MODE_SHFT ; //configure longFrames
|
||
322 | |||
323 | pdw1000local->txFCTRL = dwt_read32bitreg(TX_FCTRL_ID) ; |
||
324 | |||
325 | return DWT_SUCCESS ;
|
||
326 | |||
327 | } // end dwt_initialise()
|
||
328 | |||
329 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
330 | * @fn dwt_otprevision()
|
||
331 | *
|
||
332 | * @brief This is used to return the read OTP revision
|
||
333 | *
|
||
334 | * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
||
335 | *
|
||
336 | * input parameters
|
||
337 | *
|
||
338 | * output parameters
|
||
339 | *
|
||
340 | * returns the read OTP revision value
|
||
341 | */
|
||
342 | uint8 dwt_otprevision(void)
|
||
343 | { |
||
344 | return pdw1000local->otprev ;
|
||
345 | } |
||
346 | |||
347 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
348 | * @fn dwt_setfinegraintxseq()
|
||
349 | *
|
||
350 | * @brief This function enables/disables the fine grain TX sequencing (enabled by default).
|
||
351 | *
|
||
352 | * input parameters
|
||
353 | * @param enable - 1 to enable fine grain TX sequencing, 0 to disable it.
|
||
354 | *
|
||
355 | * output parameters none
|
||
356 | *
|
||
357 | * no return value
|
||
358 | */
|
||
359 | void dwt_setfinegraintxseq(int enable) |
||
360 | { |
||
361 | if (enable)
|
||
362 | { |
||
363 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_ENABLE); |
||
364 | } |
||
365 | else
|
||
366 | { |
||
367 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_DISABLE); |
||
368 | } |
||
369 | } |
||
370 | |||
371 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
372 | * @fn dwt_setlnapamode()
|
||
373 | *
|
||
374 | * @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual.
|
||
375 | * This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity.
|
||
376 | *
|
||
377 | * NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using
|
||
378 | * dwt_setfinegraintxseq().
|
||
379 | *
|
||
380 | * input parameters
|
||
381 | * @param lna_pa - bit field: bit 0 if set will enable LNA functionality,
|
||
382 | * : bit 1 if set will enable PA functionality,
|
||
383 | * : to disable LNA/PA set the bits to 0
|
||
384 | *
|
||
385 | * no return value
|
||
386 | */
|
||
387 | void dwt_setlnapamode(int lna_pa) |
||
388 | { |
||
389 | uint32 gpio_mode = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
||
390 | gpio_mode &= ~(GPIO_MSGP4_MASK | GPIO_MSGP5_MASK | GPIO_MSGP6_MASK); |
||
391 | if (lna_pa & DWT_LNA_ENABLE)
|
||
392 | { |
||
393 | gpio_mode |= GPIO_PIN6_EXTRXE; |
||
394 | } |
||
395 | if (lna_pa & DWT_PA_ENABLE)
|
||
396 | { |
||
397 | gpio_mode |= (GPIO_PIN5_EXTTXE | GPIO_PIN4_EXTPA); |
||
398 | } |
||
399 | dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, gpio_mode); |
||
400 | } |
||
401 | |||
402 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
403 | * @fn dwt_enablegpioclocks()
|
||
404 | *
|
||
405 | * @brief This is used to enable GPIO clocks. The clocks are needed to ensure correct GPIO operation
|
||
406 | *
|
||
407 | * input parameters
|
||
408 | *
|
||
409 | * output parameters
|
||
410 | *
|
||
411 | * no return value
|
||
412 | */
|
||
413 | void dwt_enablegpioclocks(void) |
||
414 | { |
||
415 | uint32 pmsc_clock_ctrl = dwt_read32bitreg(PMSC_ID); |
||
416 | dwt_write32bitreg(PMSC_ID, pmsc_clock_ctrl | PMSC_CTRL0_GPCE | PMSC_CTRL0_GPRN) ; |
||
417 | } |
||
418 | |||
419 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
420 | * @fn dwt_setgpiodirection()
|
||
421 | *
|
||
422 | * @brief This is used to set GPIO direction as an input (1) or output (0)
|
||
423 | *
|
||
424 | * input parameters
|
||
425 | * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file
|
||
426 | * @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file
|
||
427 | *
|
||
428 | * output parameters
|
||
429 | *
|
||
430 | * no return value
|
||
431 | */
|
||
432 | void dwt_setgpiodirection(uint32 gpioNum, uint32 direction)
|
||
433 | { |
||
434 | uint8 buf[GPIO_DIR_LEN]; |
||
435 | uint32 command = direction | gpioNum; |
||
436 | |||
437 | buf[0] = command & 0xff; |
||
438 | buf[1] = (command >> 8) & 0xff; |
||
439 | buf[2] = (command >> 16) & 0xff; |
||
440 | |||
441 | dwt_writetodevice(GPIO_CTRL_ID, GPIO_DIR_OFFSET, GPIO_DIR_LEN, buf); |
||
442 | } |
||
443 | |||
444 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
445 | * @fn dwt_setgpiovalue()
|
||
446 | *
|
||
447 | * @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output
|
||
448 | *
|
||
449 | * input parameters
|
||
450 | * @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
||
451 | * @param value - this sets the GPIO value - see DWT_GxP0... DWT_GxP8
|
||
452 | *
|
||
453 | * output parameters
|
||
454 | *
|
||
455 | * no return value
|
||
456 | */
|
||
457 | void dwt_setgpiovalue(uint32 gpioNum, uint32 value)
|
||
458 | { |
||
459 | uint8 buf[GPIO_DOUT_LEN]; |
||
460 | uint32 command = value | gpioNum; |
||
461 | |||
462 | buf[0] = command & 0xff; |
||
463 | buf[1] = (command >> 8) & 0xff; |
||
464 | buf[2] = (command >> 16) & 0xff; |
||
465 | |||
466 | dwt_writetodevice(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, GPIO_DOUT_LEN, buf); |
||
467 | } |
||
468 | |||
469 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
470 | * @fn dwt_getgpiovalue()
|
||
471 | *
|
||
472 | * @brief This is used to return 1 or 0 depending if the depending if the GPIO is high or low, only one GPIO should
|
||
473 | * be tested at a time
|
||
474 | *
|
||
475 | * input parameters
|
||
476 | * @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
||
477 | *
|
||
478 | * output parameters
|
||
479 | *
|
||
480 | * return int (1 or 0)
|
||
481 | */
|
||
482 | int dwt_getgpiovalue(uint32 gpioNum)
|
||
483 | { |
||
484 | return ((dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_RAW_OFFSET) & gpioNum)? 1 : 0); |
||
485 | } |
||
486 | |||
487 | |||
488 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
489 | * @fn dwt_geticrefvolt()
|
||
490 | *
|
||
491 | * @brief This is used to return the read V measured @ 3.3 V value recorded in OTP address 0x8 (VBAT_ADDRESS)
|
||
492 | *
|
||
493 | * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
||
494 | *
|
||
495 | * input parameters
|
||
496 | *
|
||
497 | * output parameters
|
||
498 | *
|
||
499 | * returns the 8 bit V bat value as programmed in the factory
|
||
500 | */
|
||
501 | uint8 dwt_geticrefvolt(void)
|
||
502 | { |
||
503 | #ifdef DWT_API_ERROR_CHECK
|
||
504 | assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
||
505 | #endif
|
||
506 | return pdw1000local->vBatP;
|
||
507 | } |
||
508 | |||
509 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
510 | * @fn dwt_geticreftemp()
|
||
511 | *
|
||
512 | * @brief This is used to return the read T measured @ 23 C value recorded in OTP address 0x9 (VTEMP_ADDRESS)
|
||
513 | *
|
||
514 | * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
||
515 | *
|
||
516 | * input parameters
|
||
517 | *
|
||
518 | * output parameters
|
||
519 | *
|
||
520 | * returns the 8 bit V temp value as programmed in the factory
|
||
521 | */
|
||
522 | uint8 dwt_geticreftemp(void)
|
||
523 | { |
||
524 | #ifdef DWT_API_ERROR_CHECK
|
||
525 | assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
||
526 | #endif
|
||
527 | return pdw1000local->tempP;
|
||
528 | } |
||
529 | |||
530 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
531 | * @fn dwt_getpartid()
|
||
532 | *
|
||
533 | * @brief This is used to return the read part ID (or chip ID) of the device
|
||
534 | *
|
||
535 | * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value (stored in OTP).
|
||
536 | *
|
||
537 | * input parameters
|
||
538 | *
|
||
539 | * output parameters
|
||
540 | *
|
||
541 | * returns the 32 bit part ID (or chip ID) value as programmed in the factory
|
||
542 | */
|
||
543 | uint32 dwt_getpartid(void)
|
||
544 | { |
||
545 | #ifdef DWT_API_ERROR_CHECK
|
||
546 | assert(pdw1000local->otp_mask & DWT_READ_OTP_PID); |
||
547 | #endif
|
||
548 | |||
549 | return pdw1000local->partID;
|
||
550 | } |
||
551 | |||
552 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
553 | * @fn dwt_getlotid()
|
||
554 | *
|
||
555 | * @brief This is used to return the read lot ID of the device
|
||
556 | *
|
||
557 | * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
||
558 | *
|
||
559 | * input parameters
|
||
560 | *
|
||
561 | * output parameters
|
||
562 | *
|
||
563 | * returns the 32 bit lot ID value as programmed in the factory
|
||
564 | */
|
||
565 | uint32 dwt_getlotid(void)
|
||
566 | { |
||
567 | #ifdef DWT_API_ERROR_CHECK
|
||
568 | assert(pdw1000local->otp_mask & DWT_READ_OTP_LID); |
||
569 | #endif
|
||
570 | |||
571 | return pdw1000local->lotID;
|
||
572 | } |
||
573 | |||
574 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
575 | * @fn dwt_readdevid()
|
||
576 | *
|
||
577 | * @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130)
|
||
578 | *
|
||
579 | * input parameters
|
||
580 | *
|
||
581 | * output parameters
|
||
582 | *
|
||
583 | * returns the read value which for DW1000 is 0xDECA0130
|
||
584 | */
|
||
585 | uint32 dwt_readdevid(void)
|
||
586 | { |
||
587 | return dwt_read32bitoffsetreg(DEV_ID_ID,0); |
||
588 | } |
||
589 | |||
590 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
591 | * @fn dwt_configuretxrf()
|
||
592 | *
|
||
593 | * @brief This function provides the API for the configuration of the TX spectrum
|
||
594 | * including the power and pulse generator delay. The input is a pointer to the data structure
|
||
595 | * of type dwt_txconfig_t that holds all the configurable items.
|
||
596 | *
|
||
597 | * input parameters
|
||
598 | * @param config - pointer to the txrf configuration structure, which contains the tx rf config data
|
||
599 | *
|
||
600 | * output parameters
|
||
601 | *
|
||
602 | * no return value
|
||
603 | */
|
||
604 | void dwt_configuretxrf(dwt_txconfig_t *config)
|
||
605 | { |
||
606 | |||
607 | // Configure RF TX PG_DELAY
|
||
608 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, config->PGdly); |
||
609 | |||
610 | // Configure TX power
|
||
611 | dwt_write32bitreg(TX_POWER_ID, config->power); |
||
612 | |||
613 | } |
||
614 | |||
615 | |||
616 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
617 | * @fn dwt_configurefor64plen()
|
||
618 | * - Use default OPS table should be used with following register modifications:
|
||
619 | * These modifications optimise the default OPS configuration further for 64 length preamble use case
|
||
620 | *
|
||
621 | * NOTE: These register settings are not preserved during SLEEP/DEEPSLEEP, thus they should be programmed again after wake up
|
||
622 | *
|
||
623 | * input parameters
|
||
624 | * @param prf
|
||
625 | *
|
||
626 | * output parameters
|
||
627 | *
|
||
628 | * no return value
|
||
629 | */
|
||
630 | void dwt_configurefor64plen(int prf) |
||
631 | { |
||
632 | dwt_write8bitoffsetreg(CRTR_ID, CRTR_GEAR_OFFSET, DEMOD_GEAR_64L); |
||
633 | |||
634 | if(prf == DWT_PRF_16M)
|
||
635 | { |
||
636 | dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF16);
|
||
637 | } |
||
638 | else
|
||
639 | { |
||
640 | dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF64);
|
||
641 | } |
||
642 | } |
||
643 | |||
644 | |||
645 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
646 | * @fn dwt_configure()
|
||
647 | *
|
||
648 | * @brief This function provides the main API for the configuration of the
|
||
649 | * DW1000 and this low-level driver. The input is a pointer to the data structure
|
||
650 | * of type dwt_config_t that holds all the configurable items.
|
||
651 | * The dwt_config_t structure shows which ones are supported
|
||
652 | *
|
||
653 | * input parameters
|
||
654 | * @param config - pointer to the configuration structure, which contains the device configuration data.
|
||
655 | *
|
||
656 | * output parameters
|
||
657 | *
|
||
658 | * no return value
|
||
659 | */
|
||
660 | void dwt_configure(dwt_config_t *config)
|
||
661 | { |
||
662 | uint8 nsSfd_result = 0;
|
||
663 | uint8 useDWnsSFD = 0;
|
||
664 | uint8 chan = config->chan ; |
||
665 | uint32 regval ; |
||
666 | uint16 reg16 = lde_replicaCoeff[config->rxCode]; |
||
667 | uint8 prfIndex = config->prf - DWT_PRF_16M; |
||
668 | uint8 bw = ((chan == 4) || (chan == 7)) ? 1 : 0 ; // Select wide or narrow band |
||
669 | |||
670 | #ifdef DWT_API_ERROR_CHECK
|
||
671 | assert(config->dataRate <= DWT_BR_6M8); |
||
672 | assert(config->rxPAC <= DWT_PAC64); |
||
673 | assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
||
674 | assert(((config->prf == DWT_PRF_64M) && (config->txCode >= 9) && (config->txCode <= 24)) |
||
675 | || ((config->prf == DWT_PRF_16M) && (config->txCode >= 1) && (config->txCode <= 8))); |
||
676 | assert(((config->prf == DWT_PRF_64M) && (config->rxCode >= 9) && (config->rxCode <= 24)) |
||
677 | || ((config->prf == DWT_PRF_16M) && (config->rxCode >= 1) && (config->rxCode <= 8))); |
||
678 | assert((config->txPreambLength == DWT_PLEN_64) || (config->txPreambLength == DWT_PLEN_128) || (config->txPreambLength == DWT_PLEN_256) |
||
679 | || (config->txPreambLength == DWT_PLEN_512) || (config->txPreambLength == DWT_PLEN_1024) || (config->txPreambLength == DWT_PLEN_1536) |
||
680 | || (config->txPreambLength == DWT_PLEN_2048) || (config->txPreambLength == DWT_PLEN_4096)); |
||
681 | assert((config->phrMode == DWT_PHRMODE_STD) || (config->phrMode == DWT_PHRMODE_EXT)); |
||
682 | #endif
|
||
683 | |||
684 | // For 110 kbps we need a special setup
|
||
685 | if(DWT_BR_110K == config->dataRate)
|
||
686 | { |
||
687 | pdw1000local->sysCFGreg |= SYS_CFG_RXM110K ; |
||
688 | reg16 >>= 3; // lde_replicaCoeff must be divided by 8 |
||
689 | } |
||
690 | else
|
||
691 | { |
||
692 | pdw1000local->sysCFGreg &= (~SYS_CFG_RXM110K) ; |
||
693 | } |
||
694 | |||
695 | pdw1000local->longFrames = config->phrMode ; |
||
696 | |||
697 | pdw1000local->sysCFGreg &= ~SYS_CFG_PHR_MODE_11; |
||
698 | pdw1000local->sysCFGreg |= (SYS_CFG_PHR_MODE_11 & ((uint32)config->phrMode << SYS_CFG_PHR_MODE_SHFT)); |
||
699 | |||
700 | dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
||
701 | // Set the lde_replicaCoeff
|
||
702 | dwt_write16bitoffsetreg(LDE_IF_ID, LDE_REPC_OFFSET, reg16) ; |
||
703 | |||
704 | _dwt_configlde(prfIndex); |
||
705 | |||
706 | // Configure PLL2/RF PLL block CFG/TUNE (for a given channel)
|
||
707 | dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
||
708 | dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
||
709 | |||
710 | // Configure RF RX blocks (for specified channel/bandwidth)
|
||
711 | dwt_write8bitoffsetreg(RF_CONF_ID, RF_RXCTRLH_OFFSET, rx_config[bw]); |
||
712 | |||
713 | // Configure RF TX blocks (for specified channel and PRF)
|
||
714 | // Configure RF TX control
|
||
715 | dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
||
716 | |||
717 | // Configure the baseband parameters (for specified PRF, bit rate, PAC, and SFD settings)
|
||
718 | // DTUNE0
|
||
719 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE0b_OFFSET, sftsh[config->dataRate][config->nsSFD]); |
||
720 | |||
721 | // DTUNE1
|
||
722 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1a_OFFSET, dtune1[prfIndex]); |
||
723 | |||
724 | if(config->dataRate == DWT_BR_110K)
|
||
725 | { |
||
726 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_110K); |
||
727 | } |
||
728 | else
|
||
729 | { |
||
730 | if(config->txPreambLength == DWT_PLEN_64)
|
||
731 | { |
||
732 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_6M8_PRE64); |
||
733 | dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE64); |
||
734 | } |
||
735 | else
|
||
736 | { |
||
737 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_850K_6M8); |
||
738 | dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE128PLUS); |
||
739 | } |
||
740 | } |
||
741 | |||
742 | // DTUNE2
|
||
743 | dwt_write32bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET, digital_bb_config[prfIndex][config->rxPAC]); |
||
744 | |||
745 | // DTUNE3 (SFD timeout)
|
||
746 | // Don't allow 0 - SFD timeout will always be enabled
|
||
747 | if(config->sfdTO == 0) |
||
748 | { |
||
749 | config->sfdTO = DWT_SFDTOC_DEF; |
||
750 | } |
||
751 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_SFDTOC_OFFSET, config->sfdTO); |
||
752 | |||
753 | // Configure AGC parameters
|
||
754 | dwt_write32bitoffsetreg( AGC_CFG_STS_ID, 0xC, agc_config.lo32);
|
||
755 | dwt_write16bitoffsetreg( AGC_CFG_STS_ID, 0x4, agc_config.target[prfIndex]);
|
||
756 | |||
757 | // Set (non-standard) user SFD for improved performance,
|
||
758 | if(config->nsSFD)
|
||
759 | { |
||
760 | // Write non standard (DW) SFD length
|
||
761 | dwt_write8bitoffsetreg(USR_SFD_ID, 0x00, dwnsSFDlen[config->dataRate]);
|
||
762 | nsSfd_result = 3 ;
|
||
763 | useDWnsSFD = 1 ;
|
||
764 | } |
||
765 | regval = (CHAN_CTRL_TX_CHAN_MASK & (chan << CHAN_CTRL_TX_CHAN_SHIFT)) | // Transmit Channel
|
||
766 | (CHAN_CTRL_RX_CHAN_MASK & (chan << CHAN_CTRL_RX_CHAN_SHIFT)) | // Receive Channel
|
||
767 | (CHAN_CTRL_RXFPRF_MASK & ((uint32)config->prf << CHAN_CTRL_RXFPRF_SHIFT)) | // RX PRF
|
||
768 | ((CHAN_CTRL_TNSSFD|CHAN_CTRL_RNSSFD) & ((uint32)nsSfd_result << CHAN_CTRL_TNSSFD_SHIFT)) | // nsSFD enable RX&TX
|
||
769 | (CHAN_CTRL_DWSFD & ((uint32)useDWnsSFD << CHAN_CTRL_DWSFD_SHIFT)) | // Use DW nsSFD
|
||
770 | (CHAN_CTRL_TX_PCOD_MASK & ((uint32)config->txCode << CHAN_CTRL_TX_PCOD_SHIFT)) | // TX Preamble Code
|
||
771 | (CHAN_CTRL_RX_PCOD_MASK & ((uint32)config->rxCode << CHAN_CTRL_RX_PCOD_SHIFT)) ; // RX Preamble Code
|
||
772 | |||
773 | dwt_write32bitreg(CHAN_CTRL_ID,regval) ; |
||
774 | |||
775 | // Set up TX Preamble Size, PRF and Data Rate
|
||
776 | pdw1000local->txFCTRL = ((uint32)(config->txPreambLength | config->prf) << TX_FCTRL_TXPRF_SHFT) | ((uint32)config->dataRate << TX_FCTRL_TXBR_SHFT); |
||
777 | dwt_write32bitreg(TX_FCTRL_ID, pdw1000local->txFCTRL); |
||
778 | |||
779 | // The SFD transmit pattern is initialised by the DW1000 upon a user TX request, but (due to an IC issue) it is not done for an auto-ACK TX. The
|
||
780 | // SYS_CTRL write below works around this issue, by simultaneously initiating and aborting a transmission, which correctly initialises the SFD
|
||
781 | // after its configuration or reconfiguration.
|
||
782 | // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
||
783 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_TXSTRT | SYS_CTRL_TRXOFF); // Request TX start and TRX off at the same time
|
||
784 | } // end dwt_configure()
|
||
785 | |||
786 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
787 | * @fn dwt_setrxantennadelay()
|
||
788 | *
|
||
789 | * @brief This API function writes the antenna delay (in time units) to RX registers
|
||
790 | *
|
||
791 | * input parameters:
|
||
792 | * @param rxDelay - this is the total (RX) antenna delay value, which
|
||
793 | * will be programmed into the RX register
|
||
794 | *
|
||
795 | * output parameters
|
||
796 | *
|
||
797 | * no return value
|
||
798 | */
|
||
799 | void dwt_setrxantennadelay(uint16 rxDelay)
|
||
800 | { |
||
801 | // Set the RX antenna delay for auto TX timestamp adjustment
|
||
802 | dwt_write16bitoffsetreg(LDE_IF_ID, LDE_RXANTD_OFFSET, rxDelay); |
||
803 | } |
||
804 | |||
805 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
806 | * @fn dwt_settxantennadelay()
|
||
807 | *
|
||
808 | * @brief This API function writes the antenna delay (in time units) to TX registers
|
||
809 | *
|
||
810 | * input parameters:
|
||
811 | * @param txDelay - this is the total (TX) antenna delay value, which
|
||
812 | * will be programmed into the TX delay register
|
||
813 | *
|
||
814 | * output parameters
|
||
815 | *
|
||
816 | * no return value
|
||
817 | */
|
||
818 | void dwt_settxantennadelay(uint16 txDelay)
|
||
819 | { |
||
820 | // Set the TX antenna delay for auto TX timestamp adjustment
|
||
821 | dwt_write16bitoffsetreg(TX_ANTD_ID, TX_ANTD_OFFSET, txDelay); |
||
822 | } |
||
823 | |||
824 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
825 | * @fn dwt_writetxdata()
|
||
826 | *
|
||
827 | * @brief This API function writes the supplied TX data into the DW1000's
|
||
828 | * TX buffer. The input parameters are the data length in bytes and a pointer
|
||
829 | * to those data bytes.
|
||
830 | *
|
||
831 | * input parameters
|
||
832 | * @param txFrameLength - This is the total frame length, including the two byte CRC.
|
||
833 | * Note: this is the length of TX message (including the 2 byte CRC) - max is 1023
|
||
834 | * standard PHR mode allows up to 127 bytes
|
||
835 | * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
||
836 | * see dwt_configure function
|
||
837 | * @param txFrameBytes - Pointer to the user?s buffer containing the data to send.
|
||
838 | * @param txBufferOffset - This specifies an offset in the DW1000?s TX Buffer at which to start writing data.
|
||
839 | *
|
||
840 | * output parameters
|
||
841 | *
|
||
842 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
843 | */
|
||
844 | int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset)
|
||
845 | { |
||
846 | #ifdef DWT_API_ERROR_CHECK
|
||
847 | assert(txFrameLength >= 2);
|
||
848 | assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
||
849 | assert((txBufferOffset + txFrameLength) <= 1024);
|
||
850 | #endif
|
||
851 | |||
852 | if ((txBufferOffset + txFrameLength) <= 1024) |
||
853 | { |
||
854 | // Write the data to the IC TX buffer, (-2 bytes for auto generated CRC)
|
||
855 | dwt_writetodevice( TX_BUFFER_ID, txBufferOffset, txFrameLength-2, txFrameBytes);
|
||
856 | return DWT_SUCCESS;
|
||
857 | } |
||
858 | else
|
||
859 | { |
||
860 | return DWT_ERROR;
|
||
861 | } |
||
862 | } // end dwt_writetxdata()
|
||
863 | |||
864 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
865 | * @fn dwt_writetxfctrl()
|
||
866 | *
|
||
867 | * @brief This API function configures the TX frame control register before the transmission of a frame
|
||
868 | *
|
||
869 | * input parameters:
|
||
870 | * @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023
|
||
871 | * NOTE: standard PHR mode allows up to 127 bytes
|
||
872 | * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
||
873 | * see dwt_configure function
|
||
874 | * @param txBufferOffset - the offset in the tx buffer to start writing the data
|
||
875 | * @param ranging - 1 if this is a ranging frame, else 0
|
||
876 | *
|
||
877 | * output parameters
|
||
878 | *
|
||
879 | * no return value
|
||
880 | */
|
||
881 | void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) |
||
882 | { |
||
883 | |||
884 | #ifdef DWT_API_ERROR_CHECK
|
||
885 | assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
||
886 | assert((txBufferOffset + txFrameLength) <= 1024);
|
||
887 | assert((ranging == 0) || (ranging == 1)) |
||
888 | #endif
|
||
889 | |||
890 | // Write the frame length to the TX frame control register
|
||
891 | // pdw1000local->txFCTRL has kept configured bit rate information
|
||
892 | uint32 reg32 = pdw1000local->txFCTRL | txFrameLength | ((uint32)txBufferOffset << TX_FCTRL_TXBOFFS_SHFT) | ((uint32)ranging << TX_FCTRL_TR_SHFT); |
||
893 | dwt_write32bitreg(TX_FCTRL_ID, reg32); |
||
894 | } // end dwt_writetxfctrl()
|
||
895 | |||
896 | |||
897 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
898 | * @fn dwt_readrxdata()
|
||
899 | *
|
||
900 | * @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter
|
||
901 | *
|
||
902 | * input parameters
|
||
903 | * @param buffer - the buffer into which the data will be read
|
||
904 | * @param length - the length of data to read (in bytes)
|
||
905 | * @param rxBufferOffset - the offset in the rx buffer from which to read the data
|
||
906 | *
|
||
907 | * output parameters
|
||
908 | *
|
||
909 | * no return value
|
||
910 | */
|
||
911 | void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset)
|
||
912 | { |
||
913 | dwt_readfromdevice(RX_BUFFER_ID,rxBufferOffset,length,buffer) ; |
||
914 | } |
||
915 | |||
916 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
917 | * @fn dwt_readaccdata()
|
||
918 | *
|
||
919 | * @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter
|
||
920 | *
|
||
921 | * NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet
|
||
922 | * that should be discarded. This is true no matter what sub-index the read begins at.
|
||
923 | *
|
||
924 | * input parameters
|
||
925 | * @param buffer - the buffer into which the data will be read
|
||
926 | * @param length - the length of data to read (in bytes)
|
||
927 | * @param accOffset - the offset in the acc buffer from which to read the data
|
||
928 | *
|
||
929 | * output parameters
|
||
930 | *
|
||
931 | * no return value
|
||
932 | */
|
||
933 | void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 accOffset)
|
||
934 | { |
||
935 | // Force on the ACC clocks if we are sequenced
|
||
936 | _dwt_enableclocks(READ_ACC_ON); |
||
937 | |||
938 | dwt_readfromdevice(ACC_MEM_ID,accOffset,len,buffer) ; |
||
939 | |||
940 | _dwt_enableclocks(READ_ACC_OFF); // Revert clocks back
|
||
941 | } |
||
942 | |||
943 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
944 | * @fn dwt_readcarrierintegrator()
|
||
945 | *
|
||
946 | * @brief This is used to read the RX carrier integrator value (relating to the frequency offset of the TX node)
|
||
947 | *
|
||
948 | * NOTE: This is a 21-bit signed quantity, the function sign extends the most significant bit, which is bit #20
|
||
949 | * (numbering from bit zero) to return a 32-bit signed integer value.
|
||
950 | *
|
||
951 | * input parameters - NONE
|
||
952 | *
|
||
953 | * return value - the (int32) signed carrier integrator value.
|
||
954 | * A positive value means the local RX clock is running faster than the remote TX device.
|
||
955 | */
|
||
956 | |||
957 | #define B20_SIGN_EXTEND_TEST (0x00100000UL) |
||
958 | #define B20_SIGN_EXTEND_MASK (0xFFF00000UL) |
||
959 | |||
960 | int32 dwt_readcarrierintegrator(void)
|
||
961 | { |
||
962 | uint32 regval = 0 ;
|
||
963 | int j ;
|
||
964 | uint8 buffer[DRX_CARRIER_INT_LEN] ; |
||
965 | |||
966 | /* Read 3 bytes into buffer (21-bit quantity) */
|
||
967 | |||
968 | dwt_readfromdevice(DRX_CONF_ID,DRX_CARRIER_INT_OFFSET,DRX_CARRIER_INT_LEN, buffer) ; |
||
969 | |||
970 | for (j = 2 ; j >= 0 ; j --) // arrange the three bytes into an unsigned integer value |
||
971 | { |
||
972 | regval = (regval << 8) + buffer[j] ;
|
||
973 | } |
||
974 | |||
975 | if (regval & B20_SIGN_EXTEND_TEST) regval |= B20_SIGN_EXTEND_MASK ; // sign extend bit #20 to whole word |
||
976 | else regval &= DRX_CARRIER_INT_MASK ; // make sure upper bits are clear if not sign extending |
||
977 | |||
978 | return (int32) regval ; // cast unsigned value to signed quantity. |
||
979 | } |
||
980 | |||
981 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
982 | * @fn dwt_readdiagnostics()
|
||
983 | *
|
||
984 | * @brief this function reads the RX signal quality diagnostic data
|
||
985 | *
|
||
986 | * input parameters
|
||
987 | * @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000
|
||
988 | *
|
||
989 | * output parameters
|
||
990 | *
|
||
991 | * no return value
|
||
992 | */
|
||
993 | void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics)
|
||
994 | { |
||
995 | // Read the HW FP index
|
||
996 | diagnostics->firstPath = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_INDEX_OFFSET); |
||
997 | |||
998 | // LDE diagnostic data
|
||
999 | diagnostics->maxNoise = dwt_read16bitoffsetreg(LDE_IF_ID, LDE_THRESH_OFFSET); |
||
1000 | |||
1001 | // Read all 8 bytes in one SPI transaction
|
||
1002 | dwt_readfromdevice(RX_FQUAL_ID, 0x0, 8, (uint8*)&diagnostics->stdNoise); |
||
1003 | |||
1004 | diagnostics->firstPathAmp1 = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_AMPL1_OFFSET); |
||
1005 | |||
1006 | diagnostics->rxPreamCount = (dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXPACC_MASK) >> RX_FINFO_RXPACC_SHIFT ; |
||
1007 | } |
||
1008 | |||
1009 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1010 | * @fn dwt_readtxtimestamp()
|
||
1011 | *
|
||
1012 | * @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay)
|
||
1013 | *
|
||
1014 | * input parameters
|
||
1015 | * @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time
|
||
1016 | *
|
||
1017 | * output parameters - the timestamp buffer will contain the value after the function call
|
||
1018 | *
|
||
1019 | * no return value
|
||
1020 | */
|
||
1021 | void dwt_readtxtimestamp(uint8 * timestamp)
|
||
1022 | { |
||
1023 | dwt_readfromdevice(TX_TIME_ID, TX_TIME_TX_STAMP_OFFSET, TX_TIME_TX_STAMP_LEN, timestamp) ; // Read bytes directly into buffer
|
||
1024 | } |
||
1025 | |||
1026 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1027 | * @fn dwt_readtxtimestamphi32()
|
||
1028 | *
|
||
1029 | * @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
||
1030 | *
|
||
1031 | * input parameters
|
||
1032 | *
|
||
1033 | * output parameters
|
||
1034 | *
|
||
1035 | * returns high 32-bits of TX timestamp
|
||
1036 | */
|
||
1037 | uint32 dwt_readtxtimestamphi32(void)
|
||
1038 | { |
||
1039 | return dwt_read32bitoffsetreg(TX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
||
1040 | } |
||
1041 | |||
1042 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1043 | * @fn dwt_readtxtimestamplo32()
|
||
1044 | *
|
||
1045 | * @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
||
1046 | *
|
||
1047 | * input parameters
|
||
1048 | *
|
||
1049 | * output parameters
|
||
1050 | *
|
||
1051 | * returns low 32-bits of TX timestamp
|
||
1052 | */
|
||
1053 | uint32 dwt_readtxtimestamplo32(void)
|
||
1054 | { |
||
1055 | return dwt_read32bitreg(TX_TIME_ID); // Read TX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
||
1056 | } |
||
1057 | |||
1058 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1059 | * @fn dwt_readrxtimestamp()
|
||
1060 | *
|
||
1061 | * @brief This is used to read the RX timestamp (adjusted time of arrival)
|
||
1062 | *
|
||
1063 | * input parameters
|
||
1064 | * @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time
|
||
1065 | *
|
||
1066 | * output parameters - the timestamp buffer will contain the value after the function call
|
||
1067 | *
|
||
1068 | * no return value
|
||
1069 | */
|
||
1070 | void dwt_readrxtimestamp(uint8 * timestamp)
|
||
1071 | { |
||
1072 | dwt_readfromdevice(RX_TIME_ID, RX_TIME_RX_STAMP_OFFSET, RX_TIME_RX_STAMP_LEN, timestamp) ; // Get the adjusted time of arrival
|
||
1073 | } |
||
1074 | |||
1075 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1076 | * @fn dwt_readrxtimestamphi32()
|
||
1077 | *
|
||
1078 | * @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
||
1079 | *
|
||
1080 | * input parameters
|
||
1081 | *
|
||
1082 | * output parameters
|
||
1083 | *
|
||
1084 | * returns high 32-bits of RX timestamp
|
||
1085 | */
|
||
1086 | uint32 dwt_readrxtimestamphi32(void)
|
||
1087 | { |
||
1088 | return dwt_read32bitoffsetreg(RX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
||
1089 | } |
||
1090 | |||
1091 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1092 | * @fn dwt_readrxtimestamplo32()
|
||
1093 | *
|
||
1094 | * @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
||
1095 | *
|
||
1096 | * input parameters
|
||
1097 | *
|
||
1098 | * output parameters
|
||
1099 | *
|
||
1100 | * returns low 32-bits of RX timestamp
|
||
1101 | */
|
||
1102 | uint32 dwt_readrxtimestamplo32(void)
|
||
1103 | { |
||
1104 | return dwt_read32bitreg(RX_TIME_ID); // Read RX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
||
1105 | } |
||
1106 | |||
1107 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1108 | * @fn dwt_readsystimestamphi32()
|
||
1109 | *
|
||
1110 | * @brief This is used to read the high 32-bits of the system time
|
||
1111 | *
|
||
1112 | * input parameters
|
||
1113 | *
|
||
1114 | * output parameters
|
||
1115 | *
|
||
1116 | * returns high 32-bits of system time timestamp
|
||
1117 | */
|
||
1118 | uint32 dwt_readsystimestamphi32(void)
|
||
1119 | { |
||
1120 | return dwt_read32bitoffsetreg(SYS_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
||
1121 | } |
||
1122 | |||
1123 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1124 | * @fn dwt_readsystime()
|
||
1125 | *
|
||
1126 | * @brief This is used to read the system time
|
||
1127 | *
|
||
1128 | * input parameters
|
||
1129 | * @param timestamp - a pointer to a 5-byte buffer which will store the read system time
|
||
1130 | *
|
||
1131 | * output parameters
|
||
1132 | * @param timestamp - the timestamp buffer will contain the value after the function call
|
||
1133 | *
|
||
1134 | * no return value
|
||
1135 | */
|
||
1136 | void dwt_readsystime(uint8 * timestamp)
|
||
1137 | { |
||
1138 | dwt_readfromdevice(SYS_TIME_ID, SYS_TIME_OFFSET, SYS_TIME_LEN, timestamp) ; |
||
1139 | } |
||
1140 | |||
1141 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1142 | * @fn dwt_writetodevice()
|
||
1143 | *
|
||
1144 | * @brief this function is used to write to the DW1000 device registers
|
||
1145 | * Notes:
|
||
1146 | * 1. Firstly we create a header (the first byte is a header byte)
|
||
1147 | * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
||
1148 | * b. set bit-7 (or with 0x80) for write operation
|
||
1149 | * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
||
1150 | *
|
||
1151 | * 2. Write the header followed by the data bytes to the DW1000 device
|
||
1152 | *
|
||
1153 | *
|
||
1154 | * input parameters:
|
||
1155 | * @param recordNumber - ID of register file or buffer being accessed
|
||
1156 | * @param index - byte index into register file or buffer being accessed
|
||
1157 | * @param length - number of bytes being written
|
||
1158 | * @param buffer - pointer to buffer containing the 'length' bytes to be written
|
||
1159 | *
|
||
1160 | * output parameters
|
||
1161 | *
|
||
1162 | * no return value
|
||
1163 | */
|
||
1164 | void dwt_writetodevice
|
||
1165 | ( |
||
1166 | uint16 recordNumber, |
||
1167 | uint16 index, |
||
1168 | uint32 length, |
||
1169 | const uint8 *buffer
|
||
1170 | ) |
||
1171 | { |
||
1172 | uint8 header[3] ; // Buffer to compose header in |
||
1173 | int cnt = 0; // Counter for length of header |
||
1174 | #ifdef DWT_API_ERROR_CHECK
|
||
1175 | assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
||
1176 | #endif
|
||
1177 | |||
1178 | // Write message header selecting WRITE operation and addresses as appropriate (this is one to three bytes long)
|
||
1179 | if (index == 0) // For index of 0, no sub-index is required |
||
1180 | { |
||
1181 | header[cnt++] = 0x80 | recordNumber ; // Bit-7 is WRITE operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id |
||
1182 | } |
||
1183 | else
|
||
1184 | { |
||
1185 | #ifdef DWT_API_ERROR_CHECK
|
||
1186 | assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
||
1187 | #endif
|
||
1188 | header[cnt++] = 0xC0 | recordNumber ; // Bit-7 is WRITE operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
||
1189 | |||
1190 | if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
||
1191 | { |
||
1192 | header[cnt++] = (uint8)index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
||
1193 | } |
||
1194 | else
|
||
1195 | { |
||
1196 | header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
||
1197 | header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
||
1198 | } |
||
1199 | } |
||
1200 | |||
1201 | // Write it to the SPI
|
||
1202 | writetospi(cnt,header,length,buffer); |
||
1203 | } // end dwt_writetodevice()
|
||
1204 | |||
1205 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1206 | * @fn dwt_readfromdevice()
|
||
1207 | *
|
||
1208 | * @brief this function is used to read from the DW1000 device registers
|
||
1209 | * Notes:
|
||
1210 | * 1. Firstly we create a header (the first byte is a header byte)
|
||
1211 | * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
||
1212 | * b. set bit-7 (or with 0x80) for write operation
|
||
1213 | * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
||
1214 | *
|
||
1215 | * 2. Write the header followed by the data bytes to the DW1000 device
|
||
1216 | * 3. Store the read data in the input buffer
|
||
1217 | *
|
||
1218 | * input parameters:
|
||
1219 | * @param recordNumber - ID of register file or buffer being accessed
|
||
1220 | * @param index - byte index into register file or buffer being accessed
|
||
1221 | * @param length - number of bytes being read
|
||
1222 | * @param buffer - pointer to buffer in which to return the read data.
|
||
1223 | *
|
||
1224 | * output parameters
|
||
1225 | *
|
||
1226 | * no return value
|
||
1227 | */
|
||
1228 | void dwt_readfromdevice
|
||
1229 | ( |
||
1230 | uint16 recordNumber, |
||
1231 | uint16 index, |
||
1232 | uint32 length, |
||
1233 | uint8 *buffer |
||
1234 | ) |
||
1235 | { |
||
1236 | uint8 header[3] ; // Buffer to compose header in |
||
1237 | int cnt = 0; // Counter for length of header |
||
1238 | #ifdef DWT_API_ERROR_CHECK
|
||
1239 | assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
||
1240 | #endif
|
||
1241 | |||
1242 | // Write message header selecting READ operation and addresses as appropriate (this is one to three bytes long)
|
||
1243 | if (index == 0) // For index of 0, no sub-index is required |
||
1244 | { |
||
1245 | header[cnt++] = (uint8) recordNumber ; // Bit-7 zero is READ operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id
|
||
1246 | } |
||
1247 | else
|
||
1248 | { |
||
1249 | #ifdef DWT_API_ERROR_CHECK
|
||
1250 | assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
||
1251 | #endif
|
||
1252 | header[cnt++] = (uint8)(0x40 | recordNumber) ; // Bit-7 zero is READ operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
||
1253 | |||
1254 | if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
||
1255 | { |
||
1256 | header[cnt++] = (uint8) index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
||
1257 | } |
||
1258 | else
|
||
1259 | { |
||
1260 | header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
||
1261 | header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
||
1262 | } |
||
1263 | } |
||
1264 | |||
1265 | // Do the read from the SPI
|
||
1266 | readfromspi(cnt, header, length, buffer); // result is stored in the buffer
|
||
1267 | } // end dwt_readfromdevice()
|
||
1268 | |||
1269 | |||
1270 | |||
1271 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1272 | * @fn dwt_read32bitoffsetreg()
|
||
1273 | *
|
||
1274 | * @brief this function is used to read 32-bit value from the DW1000 device registers
|
||
1275 | *
|
||
1276 | * input parameters:
|
||
1277 | * @param regFileID - ID of register file or buffer being accessed
|
||
1278 | * @param regOffset - the index into register file or buffer being accessed
|
||
1279 | *
|
||
1280 | * output parameters
|
||
1281 | *
|
||
1282 | * returns 32 bit register value
|
||
1283 | */
|
||
1284 | uint32 dwt_read32bitoffsetreg(int regFileID, int regOffset) |
||
1285 | { |
||
1286 | uint32 regval = 0 ;
|
||
1287 | int j ;
|
||
1288 | uint8 buffer[4] ;
|
||
1289 | |||
1290 | dwt_readfromdevice(regFileID,regOffset,4,buffer); // Read 4 bytes (32-bits) register into buffer |
||
1291 | |||
1292 | for (j = 3 ; j >= 0 ; j --) |
||
1293 | { |
||
1294 | regval = (regval << 8) + buffer[j] ;
|
||
1295 | } |
||
1296 | return regval ;
|
||
1297 | |||
1298 | } // end dwt_read32bitoffsetreg()
|
||
1299 | |||
1300 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1301 | * @fn dwt_read16bitoffsetreg()
|
||
1302 | *
|
||
1303 | * @brief this function is used to read 16-bit value from the DW1000 device registers
|
||
1304 | *
|
||
1305 | * input parameters:
|
||
1306 | * @param regFileID - ID of register file or buffer being accessed
|
||
1307 | * @param regOffset - the index into register file or buffer being accessed
|
||
1308 | *
|
||
1309 | * output parameters
|
||
1310 | *
|
||
1311 | * returns 16 bit register value
|
||
1312 | */
|
||
1313 | uint16 dwt_read16bitoffsetreg(int regFileID, int regOffset) |
||
1314 | { |
||
1315 | uint16 regval = 0 ;
|
||
1316 | uint8 buffer[2] ;
|
||
1317 | |||
1318 | dwt_readfromdevice(regFileID,regOffset,2,buffer); // Read 2 bytes (16-bits) register into buffer |
||
1319 | |||
1320 | regval = ((uint16)buffer[1] << 8) + buffer[0] ; |
||
1321 | return regval ;
|
||
1322 | |||
1323 | } // end dwt_read16bitoffsetreg()
|
||
1324 | |||
1325 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1326 | * @fn dwt_read8bitoffsetreg()
|
||
1327 | *
|
||
1328 | * @brief this function is used to read an 8-bit value from the DW1000 device registers
|
||
1329 | *
|
||
1330 | * input parameters:
|
||
1331 | * @param regFileID - ID of register file or buffer being accessed
|
||
1332 | * @param regOffset - the index into register file or buffer being accessed
|
||
1333 | *
|
||
1334 | * output parameters
|
||
1335 | *
|
||
1336 | * returns 8-bit register value
|
||
1337 | */
|
||
1338 | uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) |
||
1339 | { |
||
1340 | uint8 regval; |
||
1341 | |||
1342 | dwt_readfromdevice(regFileID, regOffset, 1, ®val);
|
||
1343 | |||
1344 | return regval ;
|
||
1345 | } |
||
1346 | |||
1347 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1348 | * @fn dwt_write8bitoffsetreg()
|
||
1349 | *
|
||
1350 | * @brief this function is used to write an 8-bit value to the DW1000 device registers
|
||
1351 | *
|
||
1352 | * input parameters:
|
||
1353 | * @param regFileID - ID of register file or buffer being accessed
|
||
1354 | * @param regOffset - the index into register file or buffer being accessed
|
||
1355 | * @param regval - the value to write
|
||
1356 | *
|
||
1357 | * output parameters
|
||
1358 | *
|
||
1359 | * no return value
|
||
1360 | */
|
||
1361 | void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval) |
||
1362 | { |
||
1363 | dwt_writetodevice(regFileID, regOffset, 1, ®val);
|
||
1364 | } |
||
1365 | |||
1366 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1367 | * @fn dwt_write16bitoffsetreg()
|
||
1368 | *
|
||
1369 | * @brief this function is used to write 16-bit value to the DW1000 device registers
|
||
1370 | *
|
||
1371 | * input parameters:
|
||
1372 | * @param regFileID - ID of register file or buffer being accessed
|
||
1373 | * @param regOffset - the index into register file or buffer being accessed
|
||
1374 | * @param regval - the value to write
|
||
1375 | *
|
||
1376 | * output parameters
|
||
1377 | *
|
||
1378 | * no return value
|
||
1379 | */
|
||
1380 | void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16 regval) |
||
1381 | { |
||
1382 | uint8 buffer[2] ;
|
||
1383 | |||
1384 | buffer[0] = regval & 0xFF; |
||
1385 | buffer[1] = regval >> 8 ; |
||
1386 | |||
1387 | dwt_writetodevice(regFileID,regOffset,2,buffer);
|
||
1388 | } // end dwt_write16bitoffsetreg()
|
||
1389 | |||
1390 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1391 | * @fn dwt_write32bitoffsetreg()
|
||
1392 | *
|
||
1393 | * @brief this function is used to write 32-bit value to the DW1000 device registers
|
||
1394 | *
|
||
1395 | * input parameters:
|
||
1396 | * @param regFileID - ID of register file or buffer being accessed
|
||
1397 | * @param regOffset - the index into register file or buffer being accessed
|
||
1398 | * @param regval - the value to write
|
||
1399 | *
|
||
1400 | * output parameters
|
||
1401 | *
|
||
1402 | * no return value
|
||
1403 | */
|
||
1404 | void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32 regval) |
||
1405 | { |
||
1406 | int j ;
|
||
1407 | uint8 buffer[4] ;
|
||
1408 | |||
1409 | for ( j = 0 ; j < 4 ; j++ ) |
||
1410 | { |
||
1411 | buffer[j] = regval & 0xff ;
|
||
1412 | regval >>= 8 ;
|
||
1413 | } |
||
1414 | |||
1415 | dwt_writetodevice(regFileID,regOffset,4,buffer);
|
||
1416 | } // end dwt_write32bitoffsetreg()
|
||
1417 | |||
1418 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1419 | * @fn dwt_enableframefilter()
|
||
1420 | *
|
||
1421 | * @brief This is used to enable the frame filtering - (the default option is to
|
||
1422 | * accept any data and ACK frames with correct destination address
|
||
1423 | *
|
||
1424 | * input parameters
|
||
1425 | * @param - bitmask - enables/disables the frame filtering options according to
|
||
1426 | * DWT_FF_NOTYPE_EN 0x000 no frame types allowed
|
||
1427 | * DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match))
|
||
1428 | * DWT_FF_BEACON_EN 0x004 beacon frames allowed
|
||
1429 | * DWT_FF_DATA_EN 0x008 data frames allowed
|
||
1430 | * DWT_FF_ACK_EN 0x010 ack frames allowed
|
||
1431 | * DWT_FF_MAC_EN 0x020 mac control frames allowed
|
||
1432 | * DWT_FF_RSVD_EN 0x040 reserved frame types allowed
|
||
1433 | *
|
||
1434 | * output parameters
|
||
1435 | *
|
||
1436 | * no return value
|
||
1437 | */
|
||
1438 | void dwt_enableframefilter(uint16 enable)
|
||
1439 | { |
||
1440 | uint32 sysconfig = SYS_CFG_MASK & dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
||
1441 | |||
1442 | if(enable)
|
||
1443 | { |
||
1444 | // Enable frame filtering and configure frame types
|
||
1445 | sysconfig &= ~(SYS_CFG_FF_ALL_EN); // Clear all
|
||
1446 | sysconfig |= (enable & SYS_CFG_FF_ALL_EN) | SYS_CFG_FFE; |
||
1447 | } |
||
1448 | else
|
||
1449 | { |
||
1450 | sysconfig &= ~(SYS_CFG_FFE); |
||
1451 | } |
||
1452 | |||
1453 | pdw1000local->sysCFGreg = sysconfig ; |
||
1454 | dwt_write32bitreg(SYS_CFG_ID,sysconfig) ; |
||
1455 | } |
||
1456 | |||
1457 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1458 | * @fn dwt_setpanid()
|
||
1459 | *
|
||
1460 | * @brief This is used to set the PAN ID
|
||
1461 | *
|
||
1462 | * input parameters
|
||
1463 | * @param panID - this is the PAN ID
|
||
1464 | *
|
||
1465 | * output parameters
|
||
1466 | *
|
||
1467 | * no return value
|
||
1468 | */
|
||
1469 | void dwt_setpanid(uint16 panID)
|
||
1470 | { |
||
1471 | // PAN ID is high 16 bits of register
|
||
1472 | dwt_write16bitoffsetreg(PANADR_ID, PANADR_PAN_ID_OFFSET, panID); |
||
1473 | } |
||
1474 | |||
1475 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1476 | * @fn dwt_setaddress16()
|
||
1477 | *
|
||
1478 | * @brief This is used to set 16-bit (short) address
|
||
1479 | *
|
||
1480 | * input parameters
|
||
1481 | * @param shortAddress - this sets the 16 bit short address
|
||
1482 | *
|
||
1483 | * output parameters
|
||
1484 | *
|
||
1485 | * no return value
|
||
1486 | */
|
||
1487 | void dwt_setaddress16(uint16 shortAddress)
|
||
1488 | { |
||
1489 | // Short address into low 16 bits
|
||
1490 | dwt_write16bitoffsetreg(PANADR_ID, PANADR_SHORT_ADDR_OFFSET, shortAddress); |
||
1491 | } |
||
1492 | |||
1493 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1494 | * @fn dwt_seteui()
|
||
1495 | *
|
||
1496 | * @brief This is used to set the EUI 64-bit (long) address
|
||
1497 | *
|
||
1498 | * input parameters
|
||
1499 | * @param eui64 - this is the pointer to a buffer that contains the 64bit address
|
||
1500 | *
|
||
1501 | * output parameters
|
||
1502 | *
|
||
1503 | * no return value
|
||
1504 | */
|
||
1505 | void dwt_seteui(uint8 *eui64)
|
||
1506 | { |
||
1507 | dwt_writetodevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
||
1508 | } |
||
1509 | |||
1510 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1511 | * @fn dwt_geteui()
|
||
1512 | *
|
||
1513 | * @brief This is used to get the EUI 64-bit from the DW1000
|
||
1514 | *
|
||
1515 | * input parameters
|
||
1516 | * @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value
|
||
1517 | *
|
||
1518 | * output parameters
|
||
1519 | *
|
||
1520 | * no return value
|
||
1521 | */
|
||
1522 | void dwt_geteui(uint8 *eui64)
|
||
1523 | { |
||
1524 | dwt_readfromdevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
||
1525 | } |
||
1526 | |||
1527 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1528 | * @fn dwt_otpread()
|
||
1529 | *
|
||
1530 | * @brief This is used to read the OTP data from given address into provided array
|
||
1531 | *
|
||
1532 | * input parameters
|
||
1533 | * @param address - this is the OTP address to read from
|
||
1534 | * @param array - this is the pointer to the array into which to read the data
|
||
1535 | * @param length - this is the number of 32 bit words to read (array needs to be at least this length)
|
||
1536 | *
|
||
1537 | * output parameters
|
||
1538 | *
|
||
1539 | * no return value
|
||
1540 | */
|
||
1541 | void dwt_otpread(uint16 address, uint32 *array, uint8 length)
|
||
1542 | { |
||
1543 | int i;
|
||
1544 | |||
1545 | _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: Set system clock to XTAL - this is necessary to make sure the values read by _dwt_otpread are reliable
|
||
1546 | |||
1547 | for(i=0; i<length; i++) |
||
1548 | { |
||
1549 | array[i] = _dwt_otpread(address + i) ; |
||
1550 | } |
||
1551 | |||
1552 | _dwt_enableclocks(ENABLE_ALL_SEQ); // Restore system clock to PLL
|
||
1553 | |||
1554 | return ;
|
||
1555 | } |
||
1556 | |||
1557 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1558 | * @fn _dwt_otpread()
|
||
1559 | *
|
||
1560 | * @brief function to read the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
||
1561 | *
|
||
1562 | * input parameters
|
||
1563 | * @param address - address to read at
|
||
1564 | *
|
||
1565 | * output parameters
|
||
1566 | *
|
||
1567 | * returns the 32bit of read data
|
||
1568 | */
|
||
1569 | uint32 _dwt_otpread(uint16 address) |
||
1570 | { |
||
1571 | uint32 ret_data; |
||
1572 | |||
1573 | // Write the address
|
||
1574 | dwt_write16bitoffsetreg(OTP_IF_ID, OTP_ADDR, address); |
||
1575 | |||
1576 | // Perform OTP Read - Manual read mode has to be set
|
||
1577 | dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_OTPREAD | OTP_CTRL_OTPRDEN); |
||
1578 | dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, 0x00); // OTPREAD is self clearing but OTPRDEN is not |
||
1579 | |||
1580 | // Read read data, available 40ns after rising edge of OTP_READ
|
||
1581 | ret_data = dwt_read32bitoffsetreg(OTP_IF_ID, OTP_RDAT); |
||
1582 | |||
1583 | // Return the 32bit of read data
|
||
1584 | return ret_data;
|
||
1585 | } |
||
1586 | |||
1587 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1588 | * @fn _dwt_otpsetmrregs()
|
||
1589 | *
|
||
1590 | * @brief Configure the MR registers for initial programming (enable charge pump).
|
||
1591 | * Read margin is used to stress the read back from the
|
||
1592 | * programmed bit. In normal operation this is relaxed.
|
||
1593 | *
|
||
1594 | * input parameters
|
||
1595 | * @param mode - "0" : Reset all to 0x0: MRA=0x0000, MRB=0x0000, MR=0x0000
|
||
1596 | * "1" : Set for inital programming: MRA=0x9220, MRB=0x000E, MR=0x1024
|
||
1597 | * "2" : Set for soak programming: MRA=0x9220, MRB=0x0003, MR=0x1824
|
||
1598 | * "3" : High Vpp: MRA=0x9220, MRB=0x004E, MR=0x1824
|
||
1599 | * "4" : Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
||
1600 | * "5" : Array Clean: MRA=0x0049, MRB=0x0003, MR=0x0024
|
||
1601 | * "4" : Very Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
||
1602 | *
|
||
1603 | * output parameters
|
||
1604 | *
|
||
1605 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
1606 | */
|
||
1607 | uint32 _dwt_otpsetmrregs(int mode)
|
||
1608 | { |
||
1609 | uint8 wr_buf[4];
|
||
1610 | uint32 mra=0,mrb=0,mr=0; |
||
1611 | |||
1612 | // PROGRAMME MRA
|
||
1613 | // Set MRA, MODE_SEL
|
||
1614 | wr_buf[0] = 0x03; |
||
1615 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL+1,1,wr_buf); |
||
1616 | |||
1617 | // Load data
|
||
1618 | switch(mode&0x0f) { |
||
1619 | case 0x0 : |
||
1620 | mr =0x0000;
|
||
1621 | mra=0x0000;
|
||
1622 | mrb=0x0000;
|
||
1623 | break;
|
||
1624 | case 0x1 : |
||
1625 | mr =0x1024;
|
||
1626 | mra=0x9220; // Enable CPP mon |
||
1627 | mrb=0x000e;
|
||
1628 | break;
|
||
1629 | case 0x2 : |
||
1630 | mr =0x1824;
|
||
1631 | mra=0x9220;
|
||
1632 | mrb=0x0003;
|
||
1633 | break;
|
||
1634 | case 0x3 : |
||
1635 | mr =0x1824;
|
||
1636 | mra=0x9220;
|
||
1637 | mrb=0x004e;
|
||
1638 | break;
|
||
1639 | case 0x4 : |
||
1640 | mr =0x0000;
|
||
1641 | mra=0x0000;
|
||
1642 | mrb=0x0003;
|
||
1643 | break;
|
||
1644 | case 0x5 : |
||
1645 | mr =0x0024;
|
||
1646 | mra=0x0000;
|
||
1647 | mrb=0x0003;
|
||
1648 | break;
|
||
1649 | default :
|
||
1650 | return DWT_ERROR;
|
||
1651 | } |
||
1652 | |||
1653 | wr_buf[0] = mra & 0x00ff; |
||
1654 | wr_buf[1] = (mra & 0xff00)>>8; |
||
1655 | dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
||
1656 | |||
1657 | |||
1658 | // Set WRITE_MR
|
||
1659 | wr_buf[0] = 0x08; |
||
1660 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1661 | |||
1662 | // Wait?
|
||
1663 | deca_sleep(2);
|
||
1664 | |||
1665 | // Set Clear Mode sel
|
||
1666 | wr_buf[0] = 0x02; |
||
1667 | dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
||
1668 | |||
1669 | // Set AUX update, write MR
|
||
1670 | wr_buf[0] = 0x88; |
||
1671 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1672 | // Clear write MR
|
||
1673 | wr_buf[0] = 0x80; |
||
1674 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1675 | // Clear AUX update
|
||
1676 | wr_buf[0] = 0x00; |
||
1677 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1678 | |||
1679 | ///////////////////////////////////////////
|
||
1680 | // PROGRAM MRB
|
||
1681 | // Set SLOW, MRB, MODE_SEL
|
||
1682 | wr_buf[0] = 0x05; |
||
1683 | dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
||
1684 | |||
1685 | wr_buf[0] = mrb & 0x00ff; |
||
1686 | wr_buf[1] = (mrb & 0xff00)>>8; |
||
1687 | dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
||
1688 | |||
1689 | // Set WRITE_MR
|
||
1690 | wr_buf[0] = 0x08; |
||
1691 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1692 | |||
1693 | // Wait?
|
||
1694 | deca_sleep(2);
|
||
1695 | |||
1696 | // Set Clear Mode sel
|
||
1697 | wr_buf[0] = 0x04; |
||
1698 | dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
||
1699 | |||
1700 | // Set AUX update, write MR
|
||
1701 | wr_buf[0] = 0x88; |
||
1702 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1703 | // Clear write MR
|
||
1704 | wr_buf[0] = 0x80; |
||
1705 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1706 | // Clear AUX update
|
||
1707 | wr_buf[0] = 0x00; |
||
1708 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1709 | |||
1710 | ///////////////////////////////////////////
|
||
1711 | // PROGRAM MR
|
||
1712 | // Set SLOW, MODE_SEL
|
||
1713 | wr_buf[0] = 0x01; |
||
1714 | dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
||
1715 | // Load data
|
||
1716 | |||
1717 | wr_buf[0] = mr & 0x00ff; |
||
1718 | wr_buf[1] = (mr & 0xff00)>>8; |
||
1719 | dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
||
1720 | |||
1721 | // Set WRITE_MR
|
||
1722 | wr_buf[0] = 0x08; |
||
1723 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
||
1724 | |||
1725 | // Wait?
|
||
1726 | deca_sleep(2);
|
||
1727 | // Set Clear Mode sel
|
||
1728 | wr_buf[0] = 0x00; |
||
1729 | dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
||
1730 | |||
1731 | return DWT_SUCCESS;
|
||
1732 | } |
||
1733 | |||
1734 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1735 | * @fn _dwt_otpprogword32()
|
||
1736 | *
|
||
1737 | * @brief function to program the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
||
1738 | * VNM Charge pump needs to be enabled (see _dwt_otpsetmrregs)
|
||
1739 | * Note the address is only 11 bits long.
|
||
1740 | *
|
||
1741 | * input parameters
|
||
1742 | * @param address - address to read at
|
||
1743 | *
|
||
1744 | * output parameters
|
||
1745 | *
|
||
1746 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
1747 | */
|
||
1748 | uint32 _dwt_otpprogword32(uint32 data, uint16 address) |
||
1749 | { |
||
1750 | uint8 rd_buf[1];
|
||
1751 | uint8 wr_buf[4];
|
||
1752 | uint8 otp_done; |
||
1753 | |||
1754 | // Write the data
|
||
1755 | wr_buf[3] = (data>>24) & 0xff; |
||
1756 | wr_buf[2] = (data>>16) & 0xff; |
||
1757 | wr_buf[1] = (data>>8) & 0xff; |
||
1758 | wr_buf[0] = data & 0xff; |
||
1759 | dwt_writetodevice(OTP_IF_ID, OTP_WDAT, 4, wr_buf);
|
||
1760 | |||
1761 | // Write the address [10:0]
|
||
1762 | wr_buf[1] = (address>>8) & 0x07; |
||
1763 | wr_buf[0] = address & 0xff; |
||
1764 | dwt_writetodevice(OTP_IF_ID, OTP_ADDR, 2, wr_buf);
|
||
1765 | |||
1766 | // Enable Sequenced programming
|
||
1767 | wr_buf[0] = OTP_CTRL_OTPPROG;
|
||
1768 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
||
1769 | wr_buf[0] = 0x00; // And clear |
||
1770 | dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
||
1771 | |||
1772 | // WAIT for status to flag PRGM OK..
|
||
1773 | otp_done = 0;
|
||
1774 | while(otp_done == 0) |
||
1775 | { |
||
1776 | deca_sleep(1);
|
||
1777 | dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf);
|
||
1778 | |||
1779 | if((rd_buf[0] & 0x01) == 0x01) |
||
1780 | { |
||
1781 | otp_done = 1;
|
||
1782 | } |
||
1783 | } |
||
1784 | |||
1785 | return DWT_SUCCESS;
|
||
1786 | } |
||
1787 | |||
1788 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1789 | * @fn dwt_otpwriteandverify()
|
||
1790 | *
|
||
1791 | * @brief This is used to program 32-bit value into the DW1000 OTP memory.
|
||
1792 | *
|
||
1793 | * input parameters
|
||
1794 | * @param value - this is the 32-bit value to be programmed into OTP
|
||
1795 | * @param address - this is the 16-bit OTP address into which the 32-bit value is programmed
|
||
1796 | *
|
||
1797 | * output parameters
|
||
1798 | *
|
||
1799 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
1800 | */
|
||
1801 | int dwt_otpwriteandverify(uint32 value, uint16 address)
|
||
1802 | { |
||
1803 | int prog_ok = DWT_SUCCESS;
|
||
1804 | int retry = 0; |
||
1805 | // Firstly set the system clock to crystal
|
||
1806 | _dwt_enableclocks(FORCE_SYS_XTI); //set system clock to XTI
|
||
1807 | |||
1808 | //
|
||
1809 | //!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!
|
||
1810 | //Set the supply to 3.7V
|
||
1811 | //
|
||
1812 | |||
1813 | _dwt_otpsetmrregs(1); // Set mode for programming |
||
1814 | |||
1815 | // For each value to program - the readback/check is done couple of times to verify it has programmed successfully
|
||
1816 | while(1) |
||
1817 | { |
||
1818 | _dwt_otpprogword32(value, address); |
||
1819 | |||
1820 | if(_dwt_otpread(address) == value)
|
||
1821 | { |
||
1822 | break;
|
||
1823 | } |
||
1824 | retry++; |
||
1825 | if(retry==10) |
||
1826 | { |
||
1827 | break;
|
||
1828 | } |
||
1829 | } |
||
1830 | |||
1831 | // Even if the above does not exit before retry reaches 10, the programming has probably been successful
|
||
1832 | |||
1833 | _dwt_otpsetmrregs(4); // Set mode for reading |
||
1834 | |||
1835 | if(_dwt_otpread(address) != value) // If this does not pass please check voltage supply on VDDIO |
||
1836 | { |
||
1837 | prog_ok = DWT_ERROR; |
||
1838 | } |
||
1839 | |||
1840 | _dwt_otpsetmrregs(0); // Setting OTP mode register for low RM read - resetting the device would be alternative |
||
1841 | |||
1842 | return prog_ok;
|
||
1843 | } |
||
1844 | |||
1845 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1846 | * @fn _dwt_aonconfigupload()
|
||
1847 | *
|
||
1848 | * @brief This function uploads always on (AON) configuration, as set in the AON_CFG0_OFFSET register.
|
||
1849 | *
|
||
1850 | * input parameters
|
||
1851 | *
|
||
1852 | * output parameters
|
||
1853 | *
|
||
1854 | * no return value
|
||
1855 | */
|
||
1856 | void _dwt_aonconfigupload(void) |
||
1857 | { |
||
1858 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_UPL_CFG); |
||
1859 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
||
1860 | } |
||
1861 | |||
1862 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1863 | * @fn _dwt_aonarrayupload()
|
||
1864 | *
|
||
1865 | * @brief This function uploads always on (AON) data array and configuration. Thus if this function is used, then _dwt_aonconfigupload
|
||
1866 | * is not necessary. The DW1000 will go so SLEEP straight after this if the DWT_SLP_EN has been set.
|
||
1867 | *
|
||
1868 | * input parameters
|
||
1869 | *
|
||
1870 | * output parameters
|
||
1871 | *
|
||
1872 | * no return value
|
||
1873 | */
|
||
1874 | void _dwt_aonarrayupload(void) |
||
1875 | { |
||
1876 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
||
1877 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_SAVE); |
||
1878 | } |
||
1879 | |||
1880 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1881 | * @fn dwt_entersleep()
|
||
1882 | *
|
||
1883 | * @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first
|
||
1884 | * to configure the sleep and on-wake/wake-up parameters
|
||
1885 | *
|
||
1886 | * input parameters
|
||
1887 | *
|
||
1888 | * output parameters
|
||
1889 | *
|
||
1890 | * no return value
|
||
1891 | */
|
||
1892 | void dwt_entersleep(void) |
||
1893 | { |
||
1894 | // Copy config to AON - upload the new configuration
|
||
1895 | _dwt_aonarrayupload(); |
||
1896 | } |
||
1897 | |||
1898 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1899 | * @fn dwt_configuresleepcnt()
|
||
1900 | *
|
||
1901 | * @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter
|
||
1902 | *
|
||
1903 | * NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz
|
||
1904 | *
|
||
1905 | * input parameters
|
||
1906 | * @param sleepcnt - this it value of the sleep counter to program
|
||
1907 | *
|
||
1908 | * output parameters
|
||
1909 | *
|
||
1910 | * no return value
|
||
1911 | */
|
||
1912 | void dwt_configuresleepcnt(uint16 sleepcnt)
|
||
1913 | { |
||
1914 | // Force system clock to crystal
|
||
1915 | _dwt_enableclocks(FORCE_SYS_XTI); |
||
1916 | |||
1917 | // Reset sleep configuration to make sure we don't accidentally go to sleep
|
||
1918 | dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // NB: this write change the default LPCLKDIVA value which is not used anyway. |
||
1919 | dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
||
1920 | |||
1921 | // Disable the sleep counter
|
||
1922 | _dwt_aonconfigupload(); |
||
1923 | |||
1924 | // Set new value
|
||
1925 | dwt_write16bitoffsetreg(AON_ID, AON_CFG0_OFFSET + AON_CFG0_SLEEP_TIM_OFFSET, sleepcnt); |
||
1926 | _dwt_aonconfigupload(); |
||
1927 | |||
1928 | // Enable the sleep counter
|
||
1929 | dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_SLEEP_CEN); |
||
1930 | _dwt_aonconfigupload(); |
||
1931 | |||
1932 | // Put system PLL back on
|
||
1933 | _dwt_enableclocks(ENABLE_ALL_SEQ); |
||
1934 | } |
||
1935 | |||
1936 | |||
1937 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
1938 | * @fn dwt_calibratesleepcnt()
|
||
1939 | *
|
||
1940 | * @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage
|
||
1941 | *
|
||
1942 | * NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are
|
||
1943 | *
|
||
1944 | * input parameters
|
||
1945 | *
|
||
1946 | * output parameters
|
||
1947 | *
|
||
1948 | * returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value
|
||
1949 | */
|
||
1950 | uint16 dwt_calibratesleepcnt(void)
|
||
1951 | { |
||
1952 | uint16 result; |
||
1953 | |||
1954 | // Enable calibration of the sleep counter
|
||
1955 | dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_LPOSC_CAL); |
||
1956 | _dwt_aonconfigupload(); |
||
1957 | |||
1958 | // Disable calibration of the sleep counter
|
||
1959 | dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
||
1960 | _dwt_aonconfigupload(); |
||
1961 | |||
1962 | // Force system clock to crystal
|
||
1963 | _dwt_enableclocks(FORCE_SYS_XTI); |
||
1964 | |||
1965 | deca_sleep(1);
|
||
1966 | |||
1967 | // Read the number of XTAL/2 cycles one LP oscillator cycle took.
|
||
1968 | // Set up address - Read upper byte first
|
||
1969 | dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_1); |
||
1970 | |||
1971 | // Enable manual override
|
||
1972 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
||
1973 | |||
1974 | // Read confirm data that was written
|
||
1975 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
||
1976 | |||
1977 | // Read back byte from AON
|
||
1978 | result = dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
||
1979 | result <<= 8;
|
||
1980 | |||
1981 | // Set up address - Read lower byte
|
||
1982 | dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_0); |
||
1983 | |||
1984 | // Enable manual override
|
||
1985 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
||
1986 | |||
1987 | // Read confirm data that was written
|
||
1988 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
||
1989 | |||
1990 | // Read back byte from AON
|
||
1991 | result |= dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
||
1992 | |||
1993 | // Disable manual override
|
||
1994 | dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00);
|
||
1995 | |||
1996 | // Put system PLL back on
|
||
1997 | _dwt_enableclocks(ENABLE_ALL_SEQ); |
||
1998 | |||
1999 | // Returns the number of XTAL/2 cycles per one LP OSC cycle
|
||
2000 | // This can be converted into LP OSC frequency by 19.2 MHz/result
|
||
2001 | return result;
|
||
2002 | } |
||
2003 | |||
2004 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2005 | * @fn dwt_configuresleep()
|
||
2006 | *
|
||
2007 | * @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode
|
||
2008 | * i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings
|
||
2009 | * will be preserved and the device can immediately perform the desired action TX/RX
|
||
2010 | *
|
||
2011 | * NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame
|
||
2012 | *
|
||
2013 | *
|
||
2014 | * mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist
|
||
2015 | * DWT_PRESRV_SLEEP 0x0100 - preserve sleep
|
||
2016 | * DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup
|
||
2017 | * DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download)
|
||
2018 | * DWT_LOADEUI 0x0008
|
||
2019 | * DWT_GOTORX 0x0002
|
||
2020 | * DWT_TANDV 0x0001
|
||
2021 | *
|
||
2022 | * wake: wake up parameters
|
||
2023 | * DWT_XTAL_EN 0x10 - keep XTAL running during sleep
|
||
2024 | * DWT_WAKE_SLPCNT 0x8 - wake up after sleep count
|
||
2025 | * DWT_WAKE_CS 0x4 - wake up on chip select
|
||
2026 | * DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN
|
||
2027 | * DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality
|
||
2028 | *
|
||
2029 | * input parameters
|
||
2030 | * @param mode - config on-wake parameters
|
||
2031 | * @param wake - config wake up parameters
|
||
2032 | *
|
||
2033 | * output parameters
|
||
2034 | *
|
||
2035 | * no return value
|
||
2036 | */
|
||
2037 | void dwt_configuresleep(uint16 mode, uint8 wake)
|
||
2038 | { |
||
2039 | // Add predefined sleep settings before writing the mode
|
||
2040 | mode |= pdw1000local->sleep_mode; |
||
2041 | dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, mode); |
||
2042 | |||
2043 | dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, wake); |
||
2044 | } |
||
2045 | |||
2046 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2047 | * @fn dwt_entersleepaftertx(int enable)
|
||
2048 | *
|
||
2049 | * @brief sets the auto TX to sleep bit. This means that after a frame
|
||
2050 | * transmission the device will enter deep sleep mode. The dwt_configuresleep() function
|
||
2051 | * needs to be called before this to configure the on-wake settings
|
||
2052 | *
|
||
2053 | * NOTE: the IRQ line has to be low/inactive (i.e. no pending events)
|
||
2054 | *
|
||
2055 | * input parameters
|
||
2056 | * @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration
|
||
2057 | *
|
||
2058 | * output parameters
|
||
2059 | *
|
||
2060 | * no return value
|
||
2061 | */
|
||
2062 | void dwt_entersleepaftertx(int enable) |
||
2063 | { |
||
2064 | uint32 reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
||
2065 | // Set the auto TX -> sleep bit
|
||
2066 | if(enable)
|
||
2067 | { |
||
2068 | reg |= PMSC_CTRL1_ATXSLP; |
||
2069 | } |
||
2070 | else
|
||
2071 | { |
||
2072 | reg &= ~(PMSC_CTRL1_ATXSLP); |
||
2073 | } |
||
2074 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, reg); |
||
2075 | } |
||
2076 | |||
2077 | |||
2078 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2079 | * @fn dwt_spicswakeup()
|
||
2080 | *
|
||
2081 | * @brief wake up the device from sleep mode using the SPI read,
|
||
2082 | * the device will wake up on chip select line going low if the line is held low for at least 500us.
|
||
2083 | * To define the length depending on the time one wants to hold
|
||
2084 | * the chip select line low, use the following formula:
|
||
2085 | *
|
||
2086 | * length (bytes) = time (s) * byte_rate (Hz)
|
||
2087 | *
|
||
2088 | * where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back.
|
||
2089 | * To save time and power, a system designer could determine byte_rate value more precisely.
|
||
2090 | *
|
||
2091 | * NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation
|
||
2092 | *
|
||
2093 | * input parameters
|
||
2094 | * @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device
|
||
2095 | * @param length - this is the length of the dummy buffer
|
||
2096 | *
|
||
2097 | * output parameters
|
||
2098 | *
|
||
2099 | * returns DWT_SUCCESS for success, or DWT_ERROR for error
|
||
2100 | */
|
||
2101 | int dwt_spicswakeup(uint8 *buff, uint16 length)
|
||
2102 | { |
||
2103 | if(dwt_readdevid() != DWT_DEVICE_ID) // Device was in deep sleep (the first read fails) |
||
2104 | { |
||
2105 | // Need to keep chip select line low for at least 500us
|
||
2106 | dwt_readfromdevice(0x0, 0x0, length, buff); // Do a long read to wake up the chip (hold the chip select low) |
||
2107 | |||
2108 | // Need 5ms for XTAL to start and stabilise (could wait for PLL lock IRQ status bit !!!)
|
||
2109 | // NOTE: Polling of the STATUS register is not possible unless frequency is < 3MHz
|
||
2110 | deca_sleep(5);
|
||
2111 | } |
||
2112 | else
|
||
2113 | { |
||
2114 | return DWT_SUCCESS;
|
||
2115 | } |
||
2116 | // DEBUG - check if still in sleep mode
|
||
2117 | if(dwt_readdevid() != DWT_DEVICE_ID)
|
||
2118 | { |
||
2119 | return DWT_ERROR;
|
||
2120 | } |
||
2121 | |||
2122 | return DWT_SUCCESS;
|
||
2123 | } |
||
2124 | |||
2125 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2126 | * @fn _dwt_configlde()
|
||
2127 | *
|
||
2128 | * @brief configure LDE algorithm parameters
|
||
2129 | *
|
||
2130 | * input parameters
|
||
2131 | * @param prf - this is the PRF index (0 or 1) 0 corresponds to 16 and 1 to 64 PRF
|
||
2132 | *
|
||
2133 | * output parameters
|
||
2134 | *
|
||
2135 | * no return value
|
||
2136 | */
|
||
2137 | void _dwt_configlde(int prfIndex) |
||
2138 | { |
||
2139 | dwt_write8bitoffsetreg(LDE_IF_ID, LDE_CFG1_OFFSET, LDE_PARAM1); // 8-bit configuration register
|
||
2140 | |||
2141 | if(prfIndex)
|
||
2142 | { |
||
2143 | dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_64); // 16-bit LDE configuration tuning register
|
||
2144 | } |
||
2145 | else
|
||
2146 | { |
||
2147 | dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_16); |
||
2148 | } |
||
2149 | } |
||
2150 | |||
2151 | |||
2152 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2153 | * @fn _dwt_loaducodefromrom()
|
||
2154 | *
|
||
2155 | * @brief load ucode from OTP MEMORY or ROM
|
||
2156 | *
|
||
2157 | * input parameters
|
||
2158 | *
|
||
2159 | * output parameters
|
||
2160 | *
|
||
2161 | * no return value
|
||
2162 | */
|
||
2163 | void _dwt_loaducodefromrom(void) |
||
2164 | { |
||
2165 | // Set up clocks
|
||
2166 | _dwt_enableclocks(FORCE_LDE); |
||
2167 | |||
2168 | // Kick off the LDE load
|
||
2169 | dwt_write16bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_LDELOAD); // Set load LDE kick bit
|
||
2170 | |||
2171 | deca_sleep(1); // Allow time for code to upload (should take up to 120 us) |
||
2172 | |||
2173 | // Default clocks (ENABLE_ALL_SEQ)
|
||
2174 | _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
||
2175 | } |
||
2176 | |||
2177 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2178 | * @fn dwt_loadopsettabfromotp()
|
||
2179 | *
|
||
2180 | * @brief This is used to select which Operational Parameter Set table to load from OTP memory
|
||
2181 | *
|
||
2182 | * input parameters
|
||
2183 | * @param ops_sel - Operational Parameter Set table to load:
|
||
2184 | * DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration
|
||
2185 | * DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm)
|
||
2186 | * DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset)
|
||
2187 | *
|
||
2188 | * output parameters
|
||
2189 | *
|
||
2190 | * no return value
|
||
2191 | */
|
||
2192 | void dwt_loadopsettabfromotp(uint8 ops_sel)
|
||
2193 | { |
||
2194 | uint16 reg = ((ops_sel << OTP_SF_OPS_SEL_SHFT) & OTP_SF_OPS_SEL_MASK) | OTP_SF_OPS_KICK; // Select defined OPS table and trigger its loading
|
||
2195 | |||
2196 | // Set up clocks
|
||
2197 | _dwt_enableclocks(FORCE_LDE); |
||
2198 | |||
2199 | dwt_write16bitoffsetreg(OTP_IF_ID, OTP_SF, reg); |
||
2200 | |||
2201 | // Default clocks (ENABLE_ALL_SEQ)
|
||
2202 | _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
||
2203 | |||
2204 | } |
||
2205 | |||
2206 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2207 | * @fn dwt_setsmarttxpower()
|
||
2208 | *
|
||
2209 | * @brief This call enables or disables the smart TX power feature.
|
||
2210 | *
|
||
2211 | * input parameters
|
||
2212 | * @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable)
|
||
2213 | *
|
||
2214 | * output parameters
|
||
2215 | *
|
||
2216 | * no return value
|
||
2217 | */
|
||
2218 | void dwt_setsmarttxpower(int enable) |
||
2219 | { |
||
2220 | // Config system register
|
||
2221 | pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
||
2222 | |||
2223 | // Disable smart power configuration
|
||
2224 | if(enable)
|
||
2225 | { |
||
2226 | pdw1000local->sysCFGreg &= ~(SYS_CFG_DIS_STXP) ; |
||
2227 | } |
||
2228 | else
|
||
2229 | { |
||
2230 | pdw1000local->sysCFGreg |= SYS_CFG_DIS_STXP ; |
||
2231 | } |
||
2232 | |||
2233 | dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
||
2234 | } |
||
2235 | |||
2236 | |||
2237 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2238 | * @fn dwt_enableautoack()
|
||
2239 | *
|
||
2240 | * @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p.
|
||
2241 | * otherwise it will be sent with a programmed delay (in symbols), max is 255.
|
||
2242 | * NOTE: needs to have frame filtering enabled as well
|
||
2243 | *
|
||
2244 | * input parameters
|
||
2245 | * @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255.
|
||
2246 | *
|
||
2247 | * output parameters
|
||
2248 | *
|
||
2249 | * no return value
|
||
2250 | */
|
||
2251 | void dwt_enableautoack(uint8 responseDelayTime)
|
||
2252 | { |
||
2253 | // Set auto ACK reply delay
|
||
2254 | dwt_write8bitoffsetreg(ACK_RESP_T_ID, ACK_RESP_T_ACK_TIM_OFFSET, responseDelayTime); // In symbols
|
||
2255 | // Enable auto ACK
|
||
2256 | pdw1000local->sysCFGreg |= SYS_CFG_AUTOACK; |
||
2257 | dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
||
2258 | } |
||
2259 | |||
2260 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2261 | * @fn dwt_setdblrxbuffmode()
|
||
2262 | *
|
||
2263 | * @brief This call enables the double receive buffer mode
|
||
2264 | *
|
||
2265 | * input parameters
|
||
2266 | * @param enable - 1 to enable, 0 to disable the double buffer mode
|
||
2267 | *
|
||
2268 | * output parameters
|
||
2269 | *
|
||
2270 | * no return value
|
||
2271 | */
|
||
2272 | void dwt_setdblrxbuffmode(int enable) |
||
2273 | { |
||
2274 | if(enable)
|
||
2275 | { |
||
2276 | // Enable double RX buffer mode
|
||
2277 | pdw1000local->sysCFGreg &= ~SYS_CFG_DIS_DRXB; |
||
2278 | pdw1000local->dblbuffon = 1;
|
||
2279 | } |
||
2280 | else
|
||
2281 | { |
||
2282 | // Disable double RX buffer mode
|
||
2283 | pdw1000local->sysCFGreg |= SYS_CFG_DIS_DRXB; |
||
2284 | pdw1000local->dblbuffon = 0;
|
||
2285 | } |
||
2286 | |||
2287 | dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
||
2288 | } |
||
2289 | |||
2290 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2291 | * @fn dwt_setrxaftertxdelay()
|
||
2292 | *
|
||
2293 | * @brief This sets the receiver turn on delay time after a transmission of a frame
|
||
2294 | *
|
||
2295 | * input parameters
|
||
2296 | * @param rxDelayTime - (20 bits) - the delay is in UWB microseconds
|
||
2297 | *
|
||
2298 | * output parameters
|
||
2299 | *
|
||
2300 | * no return value
|
||
2301 | */
|
||
2302 | void dwt_setrxaftertxdelay(uint32 rxDelayTime)
|
||
2303 | { |
||
2304 | uint32 val = dwt_read32bitreg(ACK_RESP_T_ID) ; // Read ACK_RESP_T_ID register
|
||
2305 | |||
2306 | val &= ~(ACK_RESP_T_W4R_TIM_MASK) ; // Clear the timer (19:0)
|
||
2307 | |||
2308 | val |= (rxDelayTime & ACK_RESP_T_W4R_TIM_MASK) ; // In UWB microseconds (e.g. turn the receiver on 20uus after TX)
|
||
2309 | |||
2310 | dwt_write32bitreg(ACK_RESP_T_ID, val) ; |
||
2311 | } |
||
2312 | |||
2313 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2314 | * @fn dwt_setcallbacks()
|
||
2315 | *
|
||
2316 | * @brief This function is used to register the different callbacks called when one of the corresponding event occurs.
|
||
2317 | *
|
||
2318 | * NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null'
|
||
2319 | * callback will not be called.
|
||
2320 | *
|
||
2321 | * input parameters
|
||
2322 | * @param cbTxDone - the pointer to the TX confirmation event callback function
|
||
2323 | * @param cbRxOk - the pointer to the RX good frame event callback function
|
||
2324 | * @param cbRxTo - the pointer to the RX timeout events callback function
|
||
2325 | * @param cbRxErr - the pointer to the RX error events callback function
|
||
2326 | *
|
||
2327 | * output parameters
|
||
2328 | *
|
||
2329 | * no return value
|
||
2330 | */
|
||
2331 | void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr)
|
||
2332 | { |
||
2333 | pdw1000local->cbTxDone = cbTxDone; |
||
2334 | pdw1000local->cbRxOk = cbRxOk; |
||
2335 | pdw1000local->cbRxTo = cbRxTo; |
||
2336 | pdw1000local->cbRxErr = cbRxErr; |
||
2337 | } |
||
2338 | |||
2339 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2340 | * @fn dwt_checkirq()
|
||
2341 | *
|
||
2342 | * @brief This function checks if the IRQ line is active - this is used instead of interrupt handler
|
||
2343 | *
|
||
2344 | * input parameters
|
||
2345 | *
|
||
2346 | * output parameters
|
||
2347 | *
|
||
2348 | * return value is 1 if the IRQS bit is set and 0 otherwise
|
||
2349 | */
|
||
2350 | uint8 dwt_checkirq(void)
|
||
2351 | { |
||
2352 | return (dwt_read8bitoffsetreg(SYS_STATUS_ID, SYS_STATUS_OFFSET) & SYS_STATUS_IRQS); // Reading the lower byte only is enough for this operation |
||
2353 | } |
||
2354 | |||
2355 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2356 | * @fn dwt_isr()
|
||
2357 | *
|
||
2358 | * @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events:
|
||
2359 | * - RXFCG (through cbRxOk callback)
|
||
2360 | * - TXFRS (through cbTxDone callback)
|
||
2361 | * - RXRFTO/RXPTO (through cbRxTo callback)
|
||
2362 | * - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr)
|
||
2363 | * For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case,
|
||
2364 | * received frame information and frame control are read before calling the callback. If double buffering is activated, it
|
||
2365 | * will also toggle between reception buffers once the reception callback processing has ended.
|
||
2366 | *
|
||
2367 | * /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling!
|
||
2368 | *
|
||
2369 | * NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something
|
||
2370 | * to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered
|
||
2371 | * on any of the interrupts described above.
|
||
2372 | |||
2373 | * input parameters
|
||
2374 | *
|
||
2375 | * output parameters
|
||
2376 | *
|
||
2377 | * no return value
|
||
2378 | */
|
||
2379 | void dwt_isr(void) |
||
2380 | { |
||
2381 | uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
||
2382 | |||
2383 | // Handle RX good frame event
|
||
2384 | if(status & SYS_STATUS_RXFCG)
|
||
2385 | { |
||
2386 | uint16 finfo16; |
||
2387 | uint16 len; |
||
2388 | |||
2389 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
||
2390 | |||
2391 | pdw1000local->cbData.rx_flags = 0;
|
||
2392 | |||
2393 | // Read frame info - Only the first two bytes of the register are used here.
|
||
2394 | finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, RX_FINFO_OFFSET); |
||
2395 | |||
2396 | // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
||
2397 | len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
||
2398 | if(pdw1000local->longFrames == 0) |
||
2399 | { |
||
2400 | len &= RX_FINFO_RXFLEN_MASK; |
||
2401 | } |
||
2402 | pdw1000local->cbData.datalength = len; |
||
2403 | |||
2404 | // Report ranging bit
|
||
2405 | if(finfo16 & RX_FINFO_RNG)
|
||
2406 | { |
||
2407 | pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
||
2408 | } |
||
2409 | |||
2410 | // Report frame control - First bytes of the received frame.
|
||
2411 | dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
||
2412 | |||
2413 | // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
||
2414 | // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
||
2415 | // implementation works only for IEEE802.15.4-2011 compliant frames).
|
||
2416 | // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
||
2417 | if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
||
2418 | { |
||
2419 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
||
2420 | pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
||
2421 | pdw1000local->wait4resp = 0;
|
||
2422 | } |
||
2423 | |||
2424 | // Call the corresponding callback if present
|
||
2425 | if(pdw1000local->cbRxOk != NULL) |
||
2426 | { |
||
2427 | pdw1000local->cbRxOk(&pdw1000local->cbData); |
||
2428 | } |
||
2429 | |||
2430 | if (pdw1000local->dblbuffon)
|
||
2431 | { |
||
2432 | // Toggle the Host side Receive Buffer Pointer
|
||
2433 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET, 1);
|
||
2434 | } |
||
2435 | } |
||
2436 | |||
2437 | // Handle TX confirmation event
|
||
2438 | if(status & SYS_STATUS_TXFRS)
|
||
2439 | { |
||
2440 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_TX); // Clear TX event bits
|
||
2441 | |||
2442 | // In the case where this TXFRS interrupt is due to the automatic transmission of an ACK solicited by a response (with ACK request bit set)
|
||
2443 | // that we receive through using wait4resp to a previous TX (and assuming that the IRQ processing of that TX has already been handled), then
|
||
2444 | // we need to handle the IC issue which turns on the RX again in this situation (i.e. because it is wrongly applying the wait4resp after the
|
||
2445 | // ACK TX).
|
||
2446 | // See section "Transmit and automatically wait for response" in DW1000 User Manual
|
||
2447 | if((status & SYS_STATUS_AAT) && pdw1000local->wait4resp)
|
||
2448 | { |
||
2449 | dwt_forcetrxoff(); // Turn the RX off
|
||
2450 | dwt_rxreset(); // Reset in case we were late and a frame was already being received
|
||
2451 | } |
||
2452 | |||
2453 | // Call the corresponding callback if present
|
||
2454 | if(pdw1000local->cbTxDone != NULL) |
||
2455 | { |
||
2456 | pdw1000local->cbTxDone(&pdw1000local->cbData); |
||
2457 | } |
||
2458 | } |
||
2459 | |||
2460 | // Handle frame reception/preamble detect timeout events
|
||
2461 | if(status & SYS_STATUS_ALL_RX_TO)
|
||
2462 | { |
||
2463 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXRFTO); // Clear RX timeout event bits
|
||
2464 | |||
2465 | pdw1000local->wait4resp = 0;
|
||
2466 | |||
2467 | // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
||
2468 | // the next good frame's timestamp is computed correctly.
|
||
2469 | // See section "RX Message timestamp" in DW1000 User Manual.
|
||
2470 | dwt_forcetrxoff(); |
||
2471 | dwt_rxreset(); |
||
2472 | |||
2473 | // Call the corresponding callback if present
|
||
2474 | if(pdw1000local->cbRxTo != NULL) |
||
2475 | { |
||
2476 | pdw1000local->cbRxTo(&pdw1000local->cbData); |
||
2477 | } |
||
2478 | } |
||
2479 | |||
2480 | // Handle RX errors events
|
||
2481 | if(status & SYS_STATUS_ALL_RX_ERR)
|
||
2482 | { |
||
2483 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); // Clear RX error event bits
|
||
2484 | |||
2485 | pdw1000local->wait4resp = 0;
|
||
2486 | |||
2487 | // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
||
2488 | // the next good frame's timestamp is computed correctly.
|
||
2489 | // See section "RX Message timestamp" in DW1000 User Manual.
|
||
2490 | dwt_forcetrxoff(); |
||
2491 | dwt_rxreset(); |
||
2492 | |||
2493 | // Call the corresponding callback if present
|
||
2494 | if(pdw1000local->cbRxErr != NULL) |
||
2495 | { |
||
2496 | pdw1000local->cbRxErr(&pdw1000local->cbData); |
||
2497 | } |
||
2498 | } |
||
2499 | } |
||
2500 | |||
2501 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2502 | * @fn dwt_isr_lplisten()
|
||
2503 | *
|
||
2504 | * @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will
|
||
2505 | * only process/report the RXFCG event (through cbRxOk callback).
|
||
2506 | * It clears RXFCG interrupt and reads received frame information and frame control before calling the callback.
|
||
2507 | *
|
||
2508 | * /!\ This version of the ISR is designed for single buffering case only!
|
||
2509 | *
|
||
2510 | * input parameters
|
||
2511 | *
|
||
2512 | * output parameters
|
||
2513 | *
|
||
2514 | * no return value
|
||
2515 | */
|
||
2516 | void dwt_lowpowerlistenisr(void) |
||
2517 | { |
||
2518 | uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
||
2519 | uint16 finfo16; |
||
2520 | uint16 len; |
||
2521 | |||
2522 | // The only interrupt handled when in low-power listening mode is RX good frame so proceed directly to the handling of the received frame.
|
||
2523 | |||
2524 | // Deactivate low-power listening before clearing the interrupt. If not, the DW1000 will go back to sleep as soon as the interrupt is cleared.
|
||
2525 | dwt_setlowpowerlistening(0);
|
||
2526 | |||
2527 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
||
2528 | |||
2529 | pdw1000local->cbData.rx_flags = 0;
|
||
2530 | |||
2531 | // Read frame info - Only the first two bytes of the register are used here.
|
||
2532 | finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, 0);
|
||
2533 | |||
2534 | // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
||
2535 | len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
||
2536 | if(pdw1000local->longFrames == 0) |
||
2537 | { |
||
2538 | len &= RX_FINFO_RXFLEN_MASK; |
||
2539 | } |
||
2540 | pdw1000local->cbData.datalength = len; |
||
2541 | |||
2542 | // Report ranging bit
|
||
2543 | if(finfo16 & RX_FINFO_RNG)
|
||
2544 | { |
||
2545 | pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
||
2546 | } |
||
2547 | |||
2548 | // Report frame control - First bytes of the received frame.
|
||
2549 | dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
||
2550 | |||
2551 | // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
||
2552 | // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
||
2553 | // implementation works only for IEEE802.15.4-2011 compliant frames).
|
||
2554 | // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
||
2555 | if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
||
2556 | { |
||
2557 | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
||
2558 | pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
||
2559 | pdw1000local->wait4resp = 0;
|
||
2560 | } |
||
2561 | |||
2562 | // Call the corresponding callback if present
|
||
2563 | if(pdw1000local->cbRxOk != NULL) |
||
2564 | { |
||
2565 | pdw1000local->cbRxOk(&pdw1000local->cbData); |
||
2566 | } |
||
2567 | } |
||
2568 | |||
2569 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2570 | * @fn dwt_setleds()
|
||
2571 | *
|
||
2572 | * @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs
|
||
2573 | * Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines
|
||
2574 | * this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000
|
||
2575 | *
|
||
2576 | * input parameters
|
||
2577 | * @param mode - this is a bit field interpreted as follows:
|
||
2578 | * - bit 0: 1 to enable LEDs, 0 to disable them
|
||
2579 | * - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs)
|
||
2580 | * - bit 2 to 7: reserved
|
||
2581 | *
|
||
2582 | * output parameters none
|
||
2583 | *
|
||
2584 | * no return value
|
||
2585 | */
|
||
2586 | void dwt_setleds(uint8 mode)
|
||
2587 | { |
||
2588 | uint32 reg; |
||
2589 | |||
2590 | if (mode & DWT_LEDS_ENABLE)
|
||
2591 | { |
||
2592 | // Set up MFIO for LED output.
|
||
2593 | reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
||
2594 | reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
||
2595 | reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); |
||
2596 | dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
||
2597 | |||
2598 | // Enable LP Oscillator to run from counter and turn on de-bounce clock.
|
||
2599 | reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
||
2600 | reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); |
||
2601 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); |
||
2602 | |||
2603 | // Enable LEDs to blink and set default blink time.
|
||
2604 | reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; |
||
2605 | // Make LEDs blink once if requested.
|
||
2606 | if (mode & DWT_LEDS_INIT_BLINK)
|
||
2607 | { |
||
2608 | reg |= PMSC_LEDC_BLINK_NOW_ALL; |
||
2609 | } |
||
2610 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
||
2611 | // Clear force blink bits if needed.
|
||
2612 | if(mode & DWT_LEDS_INIT_BLINK)
|
||
2613 | { |
||
2614 | reg &= ~PMSC_LEDC_BLINK_NOW_ALL; |
||
2615 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
||
2616 | } |
||
2617 | } |
||
2618 | else
|
||
2619 | { |
||
2620 | // Clear the GPIO bits that are used for LED control.
|
||
2621 | reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
||
2622 | reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
||
2623 | dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
||
2624 | } |
||
2625 | } |
||
2626 | |||
2627 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2628 | * @fn _dwt_enableclocks()
|
||
2629 | *
|
||
2630 | * @brief function to enable/disable clocks to particular digital blocks/system
|
||
2631 | *
|
||
2632 | * input parameters
|
||
2633 | * @param clocks - set of clocks to enable/disable
|
||
2634 | *
|
||
2635 | * output parameters none
|
||
2636 | *
|
||
2637 | * no return value
|
||
2638 | */
|
||
2639 | void _dwt_enableclocks(int clocks) |
||
2640 | { |
||
2641 | uint8 reg[2];
|
||
2642 | |||
2643 | dwt_readfromdevice(PMSC_ID, PMSC_CTRL0_OFFSET, 2, reg);
|
||
2644 | switch(clocks)
|
||
2645 | { |
||
2646 | case ENABLE_ALL_SEQ:
|
||
2647 | { |
||
2648 | reg[0] = 0x00 ; |
||
2649 | reg[1] = reg[1] & 0xfe; |
||
2650 | } |
||
2651 | break;
|
||
2652 | case FORCE_SYS_XTI:
|
||
2653 | { |
||
2654 | // System and RX
|
||
2655 | reg[0] = 0x01 | (reg[0] & 0xfc); |
||
2656 | } |
||
2657 | break;
|
||
2658 | case FORCE_SYS_PLL:
|
||
2659 | { |
||
2660 | // System
|
||
2661 | reg[0] = 0x02 | (reg[0] & 0xfc); |
||
2662 | } |
||
2663 | break;
|
||
2664 | case READ_ACC_ON:
|
||
2665 | { |
||
2666 | reg[0] = 0x48 | (reg[0] & 0xb3); |
||
2667 | reg[1] = 0x80 | reg[1]; |
||
2668 | } |
||
2669 | break;
|
||
2670 | case READ_ACC_OFF:
|
||
2671 | { |
||
2672 | reg[0] = reg[0] & 0xb3; |
||
2673 | reg[1] = 0x7f & reg[1]; |
||
2674 | } |
||
2675 | break;
|
||
2676 | case FORCE_OTP_ON:
|
||
2677 | { |
||
2678 | reg[1] = 0x02 | reg[1]; |
||
2679 | } |
||
2680 | break;
|
||
2681 | case FORCE_OTP_OFF:
|
||
2682 | { |
||
2683 | reg[1] = reg[1] & 0xfd; |
||
2684 | } |
||
2685 | break;
|
||
2686 | case FORCE_TX_PLL:
|
||
2687 | { |
||
2688 | reg[0] = 0x20 | (reg[0] & 0xcf); |
||
2689 | } |
||
2690 | break;
|
||
2691 | case FORCE_LDE:
|
||
2692 | { |
||
2693 | reg[0] = 0x01; |
||
2694 | reg[1] = 0x03; |
||
2695 | } |
||
2696 | break;
|
||
2697 | default:
|
||
2698 | break;
|
||
2699 | } |
||
2700 | |||
2701 | |||
2702 | // Need to write lower byte separately before setting the higher byte(s)
|
||
2703 | dwt_writetodevice(PMSC_ID, PMSC_CTRL0_OFFSET, 1, ®[0]); |
||
2704 | dwt_writetodevice(PMSC_ID, 0x1, 1, ®[1]); |
||
2705 | |||
2706 | } // end _dwt_enableclocks()
|
||
2707 | |||
2708 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2709 | * @fn _dwt_disablesequencing()
|
||
2710 | *
|
||
2711 | * @brief This function disables the TX blocks sequencing, it disables PMSC control of RF blocks, system clock is also set to XTAL
|
||
2712 | *
|
||
2713 | * input parameters none
|
||
2714 | *
|
||
2715 | * output parameters none
|
||
2716 | *
|
||
2717 | * no return value
|
||
2718 | */
|
||
2719 | void _dwt_disablesequencing(void) // Disable sequencing and go to state "INIT" |
||
2720 | { |
||
2721 | _dwt_enableclocks(FORCE_SYS_XTI); // Set system clock to XTI
|
||
2722 | |||
2723 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); // Disable PMSC ctrl of RF and RX clk blocks
|
||
2724 | } |
||
2725 | |||
2726 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2727 | * @fn dwt_setdelayedtrxtime()
|
||
2728 | *
|
||
2729 | * @brief This API function configures the delayed transmit time or the delayed RX on time
|
||
2730 | *
|
||
2731 | * input parameters
|
||
2732 | * @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message,
|
||
2733 | * or at which to turn on the receiver)
|
||
2734 | *
|
||
2735 | * output parameters none
|
||
2736 | *
|
||
2737 | * no return value
|
||
2738 | */
|
||
2739 | void dwt_setdelayedtrxtime(uint32 starttime)
|
||
2740 | { |
||
2741 | dwt_write32bitoffsetreg(DX_TIME_ID, 1, starttime); // Write at offset 1 as the lower 9 bits of this register are ignored |
||
2742 | |||
2743 | } // end dwt_setdelayedtrxtime()
|
||
2744 | |||
2745 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2746 | * @fn dwt_starttx()
|
||
2747 | *
|
||
2748 | * @brief This call initiates the transmission, input parameter indicates which TX mode is used see below
|
||
2749 | *
|
||
2750 | * input parameters:
|
||
2751 | * @param mode - if mode = DWT_START_TX_IMMEDIATE - immediate TX (no response expected)
|
||
2752 | * if mode = DWT_START_TX_DELAYED - delayed TX (no response expected)
|
||
2753 | * if mode = DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED - immediate TX (response expected - so the receiver will be automatically turned on after TX is done)
|
||
2754 | * if mode = DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED - delayed TX (response expected - so the receiver will be automatically turned on after TX is done)
|
||
2755 | *
|
||
2756 | * output parameters
|
||
2757 | *
|
||
2758 | * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will be cancelled if the delayed time has passed)
|
||
2759 | */
|
||
2760 | |||
2761 | int dwt_starttx(uint8 mode)
|
||
2762 | { |
||
2763 | int retval = DWT_SUCCESS ;
|
||
2764 | uint8 temp = 0x00;
|
||
2765 | uint16 checkTxOK = 0 ;
|
||
2766 | |||
2767 | if(mode & DWT_RESPONSE_EXPECTED)
|
||
2768 | { |
||
2769 | temp = (uint8)SYS_CTRL_WAIT4RESP ; // Set wait4response bit
|
||
2770 | pdw1000local->wait4resp = 1;
|
||
2771 | } |
||
2772 | |||
2773 | if (mode & DWT_START_TX_DELAYED)
|
||
2774 | { |
||
2775 | // Both SYS_CTRL_TXSTRT and SYS_CTRL_TXDLYS to correctly enable TX
|
||
2776 | temp |= (uint8)(SYS_CTRL_TXDLYS | SYS_CTRL_TXSTRT) ; |
||
2777 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
||
2778 | checkTxOK = dwt_read16bitoffsetreg(SYS_STATUS_ID, 3); // Read at offset 3 to get the upper 2 bytes out of 5 |
||
2779 | if ((checkTxOK & SYS_STATUS_TXERR) == 0) // Transmit Delayed Send set over Half a Period away or Power Up error (there is enough time to send but not to power up individual blocks). |
||
2780 | { |
||
2781 | retval = DWT_SUCCESS ; // All okay
|
||
2782 | } |
||
2783 | else
|
||
2784 | { |
||
2785 | // If HPDWARN or TXPUTE are set this indicates that the TXDLYS was set too late for the specified DX_TIME.
|
||
2786 | // remedial action is to cancel delayed send and report error
|
||
2787 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF); |
||
2788 | retval = DWT_ERROR ; // Failed !
|
||
2789 | } |
||
2790 | } |
||
2791 | else
|
||
2792 | { |
||
2793 | temp |= (uint8)SYS_CTRL_TXSTRT ; |
||
2794 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
||
2795 | } |
||
2796 | |||
2797 | return retval;
|
||
2798 | |||
2799 | } // end dwt_starttx()
|
||
2800 | |||
2801 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2802 | * @fn dwt_forcetrxoff()
|
||
2803 | *
|
||
2804 | * @brief This is used to turn off the transceiver
|
||
2805 | *
|
||
2806 | * input parameters
|
||
2807 | *
|
||
2808 | * output parameters
|
||
2809 | *
|
||
2810 | * no return value
|
||
2811 | */
|
||
2812 | void dwt_forcetrxoff(void) |
||
2813 | { |
||
2814 | decaIrqStatus_t stat ; |
||
2815 | uint32 mask; |
||
2816 | |||
2817 | mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read set interrupt mask
|
||
2818 | |||
2819 | // Need to beware of interrupts occurring in the middle of following read modify write cycle
|
||
2820 | // We can disable the radio, but before the status is cleared an interrupt can be set (e.g. the
|
||
2821 | // event has just happened before the radio was disabled)
|
||
2822 | // thus we need to disable interrupt during this operation
|
||
2823 | stat = decamutexon() ; |
||
2824 | |||
2825 | dwt_write32bitreg(SYS_MASK_ID, 0) ; // Clear interrupt mask - so we don't get any unwanted events |
||
2826 | |||
2827 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF) ; // Disable the radio
|
||
2828 | |||
2829 | // Forcing Transceiver off - so we do not want to see any new events that may have happened
|
||
2830 | dwt_write32bitreg(SYS_STATUS_ID, (SYS_STATUS_ALL_TX | SYS_STATUS_ALL_RX_ERR | SYS_STATUS_ALL_RX_TO | SYS_STATUS_ALL_RX_GOOD)); |
||
2831 | |||
2832 | dwt_syncrxbufptrs(); |
||
2833 | |||
2834 | dwt_write32bitreg(SYS_MASK_ID, mask) ; // Set interrupt mask to what it was
|
||
2835 | |||
2836 | // Enable/restore interrupts again...
|
||
2837 | decamutexoff(stat) ; |
||
2838 | pdw1000local->wait4resp = 0;
|
||
2839 | |||
2840 | } // end deviceforcetrxoff()
|
||
2841 | |||
2842 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2843 | * @fn dwt_syncrxbufptrs()
|
||
2844 | *
|
||
2845 | * @brief this function synchronizes rx buffer pointers
|
||
2846 | * need to make sure that the host/IC buffer pointers are aligned before starting RX
|
||
2847 | *
|
||
2848 | * input parameters:
|
||
2849 | *
|
||
2850 | * output parameters
|
||
2851 | *
|
||
2852 | * no return value
|
||
2853 | */
|
||
2854 | void dwt_syncrxbufptrs(void) |
||
2855 | { |
||
2856 | uint8 buff ; |
||
2857 | // Need to make sure that the host/IC buffer pointers are aligned before starting RX
|
||
2858 | buff = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
||
2859 | |||
2860 | if((buff & (SYS_STATUS_ICRBP >> 24)) != // IC side Receive Buffer Pointer |
||
2861 | ((buff & (SYS_STATUS_HSRBP>>24)) << 1) ) // Host Side Receive Buffer Pointer |
||
2862 | { |
||
2863 | dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET , 0x01) ; // We need to swap RX buffer status reg (write one to toggle internally) |
||
2864 | } |
||
2865 | } |
||
2866 | |||
2867 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2868 | * @fn dwt_setsniffmode()
|
||
2869 | *
|
||
2870 | * @brief enable/disable and configure SNIFF mode.
|
||
2871 | *
|
||
2872 | * SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time.
|
||
2873 | * The time spent in each state (on/off) is specified through the parameters below.
|
||
2874 | * See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details.
|
||
2875 | *
|
||
2876 | * input parameters:
|
||
2877 | * @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account.
|
||
2878 | * @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
||
2879 | * size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15.
|
||
2880 | * @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 ?s (~1 ?s). Max value is 255.
|
||
2881 | *
|
||
2882 | * output parameters
|
||
2883 | *
|
||
2884 | * no return value
|
||
2885 | */
|
||
2886 | void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff) |
||
2887 | { |
||
2888 | uint32 pmsc_reg; |
||
2889 | if (enable)
|
||
2890 | { |
||
2891 | /* Configure ON/OFF times and enable PLL2 on/off sequencing by SNIFF mode. */
|
||
2892 | uint16 sniff_reg = (((uint16)timeOff << 8) | timeOn) & RX_SNIFF_MASK;
|
||
2893 | dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, sniff_reg); |
||
2894 | pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
||
2895 | pmsc_reg |= PMSC_CTRL0_PLL2_SEQ_EN; |
||
2896 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
||
2897 | } |
||
2898 | else
|
||
2899 | { |
||
2900 | /* Clear ON/OFF times and disable PLL2 on/off sequencing by SNIFF mode. */
|
||
2901 | dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, 0x0000);
|
||
2902 | pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
||
2903 | pmsc_reg &= ~PMSC_CTRL0_PLL2_SEQ_EN; |
||
2904 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
||
2905 | } |
||
2906 | } |
||
2907 | |||
2908 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2909 | * @fn dwt_setlowpowerlistening()
|
||
2910 | *
|
||
2911 | * @brief enable/disable low-power listening mode.
|
||
2912 | *
|
||
2913 | * Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after
|
||
2914 | * this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening"
|
||
2915 | * phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power
|
||
2916 | * Listening" for more details.
|
||
2917 | *
|
||
2918 | * NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it:
|
||
2919 | * - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP,
|
||
2920 | * DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set.
|
||
2921 | * - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration.
|
||
2922 | * - dwt_setsnoozetime() to define the "short sleep" phase duration.
|
||
2923 | * - dwt_setpreambledetecttimeout() to define the reception phases duration.
|
||
2924 | * - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only.
|
||
2925 | * When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using
|
||
2926 | * dwt_entersleep()) or by activating reception (using dwt_rxenable()).
|
||
2927 | *
|
||
2928 | * Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's
|
||
2929 | * website). They form a working example code that shows how to use low-power listening correctly.
|
||
2930 | *
|
||
2931 | * input parameters:
|
||
2932 | * @param enable - 1 to enable low-power listening, 0 to disable.
|
||
2933 | *
|
||
2934 | * output parameters
|
||
2935 | *
|
||
2936 | * no return value
|
||
2937 | */
|
||
2938 | void dwt_setlowpowerlistening(int enable) |
||
2939 | { |
||
2940 | uint32 pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
||
2941 | if (enable)
|
||
2942 | { |
||
2943 | /* Configure RX to sleep and snooze features. */
|
||
2944 | pmsc_reg |= (PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
||
2945 | } |
||
2946 | else
|
||
2947 | { |
||
2948 | /* Reset RX to sleep and snooze features. */
|
||
2949 | pmsc_reg &= ~(PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
||
2950 | } |
||
2951 | dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, pmsc_reg); |
||
2952 | } |
||
2953 | |||
2954 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2955 | * @fn dwt_setsnoozetime()
|
||
2956 | *
|
||
2957 | * @brief Set duration of "short sleep" phase when in low-power listening mode.
|
||
2958 | *
|
||
2959 | * input parameters:
|
||
2960 | * @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 ?s (~26.7 ?s). The counter
|
||
2961 | * automatically adds 1 to the value set. The smallest working value that should be set is 1,
|
||
2962 | * i.e. giving a snooze time of 2 units (or ~53 ?s).
|
||
2963 | *
|
||
2964 | * output parameters
|
||
2965 | *
|
||
2966 | * no return value
|
||
2967 | */
|
||
2968 | void dwt_setsnoozetime(uint8 snooze_time)
|
||
2969 | { |
||
2970 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_SNOZT_OFFSET, snooze_time); |
||
2971 | } |
||
2972 | |||
2973 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
2974 | * @fn dwt_rxenable()
|
||
2975 | *
|
||
2976 | * @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a
|
||
2977 | * "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set.
|
||
2978 | * The receiver will stay turned on, listening to any messages until
|
||
2979 | * it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame).
|
||
2980 | *
|
||
2981 | * input parameters
|
||
2982 | * @param mode - this can be one of the following allowed values:
|
||
2983 | *
|
||
2984 | * DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately
|
||
2985 | * DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately
|
||
2986 | * (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error
|
||
2987 | * (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when
|
||
2988 | * performing manual RX re-enabling in double buffering mode
|
||
2989 | *
|
||
2990 | * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed)
|
||
2991 | */
|
||
2992 | int dwt_rxenable(int mode) |
||
2993 | { |
||
2994 | uint16 temp ; |
||
2995 | uint8 temp1 ; |
||
2996 | |||
2997 | if ((mode & DWT_NO_SYNC_PTRS) == 0) |
||
2998 | { |
||
2999 | dwt_syncrxbufptrs(); |
||
3000 | } |
||
3001 | |||
3002 | temp = (uint16)SYS_CTRL_RXENAB ; |
||
3003 | |||
3004 | if (mode & DWT_START_RX_DELAYED)
|
||
3005 | { |
||
3006 | temp |= (uint16)SYS_CTRL_RXDLYE ; |
||
3007 | } |
||
3008 | |||
3009 | dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
||
3010 | |||
3011 | if (mode & DWT_START_RX_DELAYED) // check for errors |
||
3012 | { |
||
3013 | temp1 = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
||
3014 | if ((temp1 & (SYS_STATUS_HPDWARN >> 24)) != 0) // if delay has passed do immediate RX on unless DWT_IDLE_ON_DLY_ERR is true |
||
3015 | { |
||
3016 | dwt_forcetrxoff(); // turn the delayed receive off
|
||
3017 | |||
3018 | if((mode & DWT_IDLE_ON_DLY_ERR) == 0) // if DWT_IDLE_ON_DLY_ERR not set then re-enable receiver |
||
3019 | { |
||
3020 | dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_RXENAB); |
||
3021 | } |
||
3022 | return DWT_ERROR; // return warning indication |
||
3023 | } |
||
3024 | } |
||
3025 | |||
3026 | return DWT_SUCCESS;
|
||
3027 | } // end dwt_rxenable()
|
||
3028 | |||
3029 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3030 | * @fn dwt_setrxtimeout()
|
||
3031 | *
|
||
3032 | * @brief This call enables RX timeout (SY_STAT_RFTO event)
|
||
3033 | *
|
||
3034 | * input parameters
|
||
3035 | * @param time - how long the receiver remains on from the RX enable command
|
||
3036 | * The time parameter used here is in 1.0256 us (512/499.2MHz) units
|
||
3037 | * If set to 0 the timeout is disabled.
|
||
3038 | *
|
||
3039 | * output parameters
|
||
3040 | *
|
||
3041 | * no return value
|
||
3042 | */
|
||
3043 | void dwt_setrxtimeout(uint16 time)
|
||
3044 | { |
||
3045 | uint8 temp ; |
||
3046 | |||
3047 | temp = dwt_read8bitoffsetreg(SYS_CFG_ID, 3); // Read at offset 3 to get the upper byte only |
||
3048 | |||
3049 | if(time > 0) |
||
3050 | { |
||
3051 | dwt_write16bitoffsetreg(RX_FWTO_ID, RX_FWTO_OFFSET, time) ; |
||
3052 | |||
3053 | temp |= (uint8)(SYS_CFG_RXWTOE>>24); // Shift RXWTOE mask as we read the upper byte only |
||
3054 | // OR in 32bit value (1 bit set), I know this is in high byte.
|
||
3055 | pdw1000local->sysCFGreg |= SYS_CFG_RXWTOE; |
||
3056 | |||
3057 | dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
||
3058 | } |
||
3059 | else
|
||
3060 | { |
||
3061 | temp &= ~((uint8)(SYS_CFG_RXWTOE>>24)); // Shift RXWTOE mask as we read the upper byte only |
||
3062 | // AND in inverted 32bit value (1 bit clear), I know this is in high byte.
|
||
3063 | pdw1000local->sysCFGreg &= ~(SYS_CFG_RXWTOE); |
||
3064 | |||
3065 | dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
||
3066 | } |
||
3067 | |||
3068 | } // end dwt_setrxtimeout()
|
||
3069 | |||
3070 | |||
3071 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3072 | * @fn dwt_setpreambledetecttimeout()
|
||
3073 | *
|
||
3074 | * @brief This call enables preamble timeout (SY_STAT_RXPTO event)
|
||
3075 | *
|
||
3076 | * input parameters
|
||
3077 | * @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
||
3078 | * size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size).
|
||
3079 | *
|
||
3080 | * Note: value of 0 disables the preamble timeout
|
||
3081 | * output parameters
|
||
3082 | *
|
||
3083 | * no return value
|
||
3084 | */
|
||
3085 | void dwt_setpreambledetecttimeout(uint16 timeout)
|
||
3086 | { |
||
3087 | dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_PRETOC_OFFSET, timeout); |
||
3088 | } |
||
3089 | |||
3090 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3091 | * @fn void dwt_setinterrupt()
|
||
3092 | *
|
||
3093 | * @brief This function enables the specified events to trigger an interrupt.
|
||
3094 | * The following events can be enabled:
|
||
3095 | * DWT_INT_TFRS 0x00000080 // frame sent
|
||
3096 | * DWT_INT_RFCG 0x00004000 // frame received with good CRC
|
||
3097 | * DWT_INT_RPHE 0x00001000 // receiver PHY header error
|
||
3098 | * DWT_INT_RFCE 0x00008000 // receiver CRC error
|
||
3099 | * DWT_INT_RFSL 0x00010000 // receiver sync loss error
|
||
3100 | * DWT_INT_RFTO 0x00020000 // frame wait timeout
|
||
3101 | * DWT_INT_RXPTO 0x00200000 // preamble detect timeout
|
||
3102 | * DWT_INT_SFDT 0x04000000 // SFD timeout
|
||
3103 | * DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration)
|
||
3104 | *
|
||
3105 | *
|
||
3106 | * input parameters:
|
||
3107 | * @param bitmask - sets the events which will generate interrupt
|
||
3108 | * @param operation - if set to 1 the interrupts (only the ones selected in the bitmask) are enabled else they are cleared
|
||
3109 | * - if set to 2 the interrupts in the bitmask are forced to selected state - i.e. the mask is written to the register directly.
|
||
3110 | *
|
||
3111 | * output parameters
|
||
3112 | *
|
||
3113 | * no return value
|
||
3114 | */
|
||
3115 | void dwt_setinterrupt(uint32 bitmask, uint8 operation)
|
||
3116 | { |
||
3117 | decaIrqStatus_t stat ; |
||
3118 | uint32 mask ; |
||
3119 | |||
3120 | // Need to beware of interrupts occurring in the middle of following read modify write cycle
|
||
3121 | stat = decamutexon() ; |
||
3122 | |||
3123 | if(operation == 2) |
||
3124 | { |
||
3125 | dwt_write32bitreg(SYS_MASK_ID, bitmask) ; // New value
|
||
3126 | } |
||
3127 | else
|
||
3128 | { |
||
3129 | mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read register
|
||
3130 | if(operation == 1) |
||
3131 | { |
||
3132 | mask |= bitmask ; |
||
3133 | } |
||
3134 | else
|
||
3135 | { |
||
3136 | mask &= ~bitmask ; // Clear the bit
|
||
3137 | } |
||
3138 | dwt_write32bitreg(SYS_MASK_ID, mask) ; // New value
|
||
3139 | } |
||
3140 | |||
3141 | decamutexoff(stat) ; |
||
3142 | } |
||
3143 | |||
3144 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3145 | * @fn dwt_configeventcounters()
|
||
3146 | *
|
||
3147 | * @brief This is used to enable/disable the event counter in the IC
|
||
3148 | *
|
||
3149 | * input parameters
|
||
3150 | * @param - enable - 1 enables (and reset), 0 disables the event counters
|
||
3151 | * output parameters
|
||
3152 | *
|
||
3153 | * no return value
|
||
3154 | */
|
||
3155 | void dwt_configeventcounters(int enable) |
||
3156 | { |
||
3157 | // Need to clear and disable, can't just clear
|
||
3158 | dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_CLR)); |
||
3159 | |||
3160 | if(enable)
|
||
3161 | { |
||
3162 | dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_EN)); // Enable
|
||
3163 | } |
||
3164 | } |
||
3165 | |||
3166 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3167 | * @fn dwt_readeventcounters()
|
||
3168 | *
|
||
3169 | * @brief This is used to read the event counters in the IC
|
||
3170 | *
|
||
3171 | * input parameters
|
||
3172 | * @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data
|
||
3173 | *
|
||
3174 | * output parameters
|
||
3175 | *
|
||
3176 | * no return value
|
||
3177 | */
|
||
3178 | void dwt_readeventcounters(dwt_deviceentcnts_t *counters)
|
||
3179 | { |
||
3180 | uint32 temp; |
||
3181 | |||
3182 | temp= dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_PHE_OFFSET); // Read sync loss (31-16), PHE (15-0)
|
||
3183 | counters->PHE = temp & 0xFFF;
|
||
3184 | counters->RSL = (temp >> 16) & 0xFFF; |
||
3185 | |||
3186 | temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FCG_OFFSET); // Read CRC bad (31-16), CRC good (15-0)
|
||
3187 | counters->CRCG = temp & 0xFFF;
|
||
3188 | counters->CRCB = (temp >> 16) & 0xFFF; |
||
3189 | |||
3190 | temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FFR_OFFSET); // Overruns (31-16), address errors (15-0)
|
||
3191 | counters->ARFE = temp & 0xFFF;
|
||
3192 | counters->OVER = (temp >> 16) & 0xFFF; |
||
3193 | |||
3194 | temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_STO_OFFSET); // Read PTO (31-16), SFDTO (15-0)
|
||
3195 | counters->PTO = (temp >> 16) & 0xFFF; |
||
3196 | counters->SFDTO = temp & 0xFFF;
|
||
3197 | |||
3198 | temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FWTO_OFFSET); // Read RX TO (31-16), TXFRAME (15-0)
|
||
3199 | counters->TXF = (temp >> 16) & 0xFFF; |
||
3200 | counters->RTO = temp & 0xFFF;
|
||
3201 | |||
3202 | temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_HPW_OFFSET); // Read half period warning events
|
||
3203 | counters->HPW = temp & 0xFFF;
|
||
3204 | counters->TXW = (temp >> 16) & 0xFFF; // Power-up warning events |
||
3205 | |||
3206 | } |
||
3207 | |||
3208 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3209 | * @fn dwt_rxreset()
|
||
3210 | *
|
||
3211 | * @brief this function resets the receiver of the DW1000
|
||
3212 | *
|
||
3213 | * input parameters:
|
||
3214 | *
|
||
3215 | * output parameters
|
||
3216 | *
|
||
3217 | * no return value
|
||
3218 | */
|
||
3219 | void dwt_rxreset(void) |
||
3220 | { |
||
3221 | // Set RX reset
|
||
3222 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_RX); |
||
3223 | |||
3224 | // Clear RX reset
|
||
3225 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
||
3226 | } |
||
3227 | |||
3228 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3229 | * @fn dwt_softreset()
|
||
3230 | *
|
||
3231 | * @brief this function resets the DW1000
|
||
3232 | *
|
||
3233 | * input parameters:
|
||
3234 | *
|
||
3235 | * output parameters
|
||
3236 | *
|
||
3237 | * no return value
|
||
3238 | */
|
||
3239 | void dwt_softreset(void) |
||
3240 | { |
||
3241 | _dwt_disablesequencing(); |
||
3242 | |||
3243 | // Clear any AON auto download bits (as reset will trigger AON download)
|
||
3244 | dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, 0x00);
|
||
3245 | // Clear the wake-up configuration
|
||
3246 | dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00);
|
||
3247 | // Upload the new configuration
|
||
3248 | _dwt_aonarrayupload(); |
||
3249 | |||
3250 | // Reset HIF, TX, RX and PMSC (set the reset bits)
|
||
3251 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_ALL); |
||
3252 | |||
3253 | // DW1000 needs a 10us sleep to let clk PLL lock after reset - the PLL will automatically lock after the reset
|
||
3254 | // Could also have polled the PLL lock flag, but then the SPI needs to be < 3MHz !! So a simple delay is easier
|
||
3255 | deca_sleep(1);
|
||
3256 | |||
3257 | // Clear the reset bits
|
||
3258 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
||
3259 | |||
3260 | pdw1000local->wait4resp = 0;
|
||
3261 | } |
||
3262 | |||
3263 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3264 | * @fn dwt_setxtaltrim()
|
||
3265 | *
|
||
3266 | * @brief This is used to adjust the crystal frequency
|
||
3267 | *
|
||
3268 | * input parameters:
|
||
3269 | * @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step)
|
||
3270 | *
|
||
3271 | * output parameters
|
||
3272 | *
|
||
3273 | * no return value
|
||
3274 | */
|
||
3275 | void dwt_setxtaltrim(uint8 value)
|
||
3276 | { |
||
3277 | // The 3 MSb in this 8-bit register must be kept to 0b011 to avoid any malfunction.
|
||
3278 | uint8 reg_val = (3 << 5) | (value & FS_XTALT_MASK); |
||
3279 | dwt_write8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET, reg_val); |
||
3280 | } |
||
3281 | |||
3282 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3283 | * @fn dwt_getxtaltrim()
|
||
3284 | *
|
||
3285 | * @brief This function returns current value of XTAL trim. If this is called after dwt_initalise it will return the OTP value
|
||
3286 | * if OTP value is non-zero or FS_XTALT_MIDRANGE if OTP value is zero (not programmed).
|
||
3287 | *
|
||
3288 | * input parameters
|
||
3289 | *
|
||
3290 | * output parameters
|
||
3291 | *
|
||
3292 | * returns the current XTAL trim value
|
||
3293 | */
|
||
3294 | uint8 dwt_getxtaltrim(void)
|
||
3295 | { |
||
3296 | return (dwt_read8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET) & FS_XTALT_MASK);
|
||
3297 | } |
||
3298 | |||
3299 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3300 | * @fn dwt_configcwmode()
|
||
3301 | *
|
||
3302 | * @brief this function sets the DW1000 to transmit cw signal at specific channel frequency
|
||
3303 | *
|
||
3304 | * input parameters:
|
||
3305 | * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7)
|
||
3306 | *
|
||
3307 | * output parameters
|
||
3308 | *
|
||
3309 | * no return value
|
||
3310 | */
|
||
3311 | void dwt_configcwmode(uint8 chan)
|
||
3312 | { |
||
3313 | #ifdef DWT_API_ERROR_CHECK
|
||
3314 | assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
||
3315 | #endif
|
||
3316 | |||
3317 | //
|
||
3318 | // Disable TX/RX RF block sequencing (needed for cw frame mode)
|
||
3319 | //
|
||
3320 | _dwt_disablesequencing(); |
||
3321 | |||
3322 | // Config RF pll (for a given channel)
|
||
3323 | // Configure PLL2/RF PLL block CFG/TUNE
|
||
3324 | dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
||
3325 | dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
||
3326 | // PLL wont be enabled until a TX/RX enable is issued later on
|
||
3327 | // Configure RF TX blocks (for specified channel and prf)
|
||
3328 | // Config RF TX control
|
||
3329 | dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
||
3330 | |||
3331 | //
|
||
3332 | // Enable RF PLL
|
||
3333 | //
|
||
3334 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
||
3335 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
||
3336 | |||
3337 | //
|
||
3338 | // Configure TX clocks
|
||
3339 | //
|
||
3340 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, 0x22);
|
||
3341 | dwt_write8bitoffsetreg(PMSC_ID, 0x1, 0x07); |
||
3342 | |||
3343 | // Disable fine grain TX sequencing
|
||
3344 | dwt_setfinegraintxseq(0);
|
||
3345 | |||
3346 | // Configure CW mode
|
||
3347 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGTEST_OFFSET, TC_PGTEST_CW); |
||
3348 | } |
||
3349 | |||
3350 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3351 | * @fn dwt_configcontinuousframemode()
|
||
3352 | *
|
||
3353 | * @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing.
|
||
3354 | *
|
||
3355 | * input parameters:
|
||
3356 | * @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions.
|
||
3357 | * The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)).
|
||
3358 | *
|
||
3359 | * output parameters
|
||
3360 | *
|
||
3361 | * no return value
|
||
3362 | */
|
||
3363 | void dwt_configcontinuousframemode(uint32 framerepetitionrate)
|
||
3364 | { |
||
3365 | //
|
||
3366 | // Disable TX/RX RF block sequencing (needed for continuous frame mode)
|
||
3367 | //
|
||
3368 | _dwt_disablesequencing(); |
||
3369 | |||
3370 | //
|
||
3371 | // Enable RF PLL and TX blocks
|
||
3372 | //
|
||
3373 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
||
3374 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
||
3375 | |||
3376 | //
|
||
3377 | // Configure TX clocks
|
||
3378 | //
|
||
3379 | _dwt_enableclocks(FORCE_SYS_PLL); |
||
3380 | _dwt_enableclocks(FORCE_TX_PLL); |
||
3381 | |||
3382 | // Set the frame repetition rate
|
||
3383 | if(framerepetitionrate < 4) |
||
3384 | { |
||
3385 | framerepetitionrate = 4;
|
||
3386 | } |
||
3387 | dwt_write32bitreg(DX_TIME_ID, framerepetitionrate); |
||
3388 | |||
3389 | //
|
||
3390 | // Configure continuous frame TX
|
||
3391 | //
|
||
3392 | dwt_write8bitoffsetreg(DIG_DIAG_ID, DIAG_TMC_OFFSET, (uint8)(DIAG_TMC_TX_PSTM)); // Turn the tx power spectrum test mode - continuous sending of frames
|
||
3393 | } |
||
3394 | |||
3395 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3396 | * @fn dwt_readtempvbat()
|
||
3397 | *
|
||
3398 | * @brief this function reads the raw battery voltage and temperature values of the DW IC.
|
||
3399 | * The values read here will be the current values sampled by DW IC AtoD converters.
|
||
3400 | *
|
||
3401 | * NB: To correctly read the temperature this read should be done with xtal clock
|
||
3402 | * however that means that the receiver will be switched off, if receiver needs to be on then
|
||
3403 | * the timer is used to make sure the value is stable before reading
|
||
3404 | *
|
||
3405 | * input parameters:
|
||
3406 | * @param fastSPI - set to 1 if SPI rate > than 3MHz is used
|
||
3407 | *
|
||
3408 | * output parameters
|
||
3409 | *
|
||
3410 | * returns (temp_raw<<8)|(vbat_raw)
|
||
3411 | */
|
||
3412 | uint16 dwt_readtempvbat(uint8 fastSPI) |
||
3413 | { |
||
3414 | uint8 wr_buf[2];
|
||
3415 | uint8 vbat_raw; |
||
3416 | uint8 temp_raw; |
||
3417 | |||
3418 | // These writes should be single writes and in sequence
|
||
3419 | wr_buf[0] = 0x80; // Enable TLD Bias |
||
3420 | dwt_writetodevice(RF_CONF_ID,0x11,1,wr_buf); |
||
3421 | |||
3422 | wr_buf[0] = 0x0A; // Enable TLD Bias and ADC Bias |
||
3423 | dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); |
||
3424 | |||
3425 | wr_buf[0] = 0x0f; // Enable Outputs (only after Biases are up and running) |
||
3426 | dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); // |
||
3427 | |||
3428 | if(fastSPI == 1) |
||
3429 | { |
||
3430 | // Reading All SAR inputs
|
||
3431 | wr_buf[0] = 0x00; |
||
3432 | dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
||
3433 | wr_buf[0] = 0x01; // Set SAR enable |
||
3434 | dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
||
3435 | |||
3436 | deca_sleep(1); // If using PLL clocks(and fast SPI rate) then this sleep is needed |
||
3437 | // Read voltage and temperature.
|
||
3438 | dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
||
3439 | } |
||
3440 | else //change to a slow clock |
||
3441 | { |
||
3442 | _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read are reliable
|
||
3443 | // Reading All SAR inputs
|
||
3444 | wr_buf[0] = 0x00; |
||
3445 | dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
||
3446 | wr_buf[0] = 0x01; // Set SAR enable |
||
3447 | dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
||
3448 | |||
3449 | // Read voltage and temperature.
|
||
3450 | dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
||
3451 | // Default clocks (ENABLE_ALL_SEQ)
|
||
3452 | _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
||
3453 | } |
||
3454 | |||
3455 | vbat_raw = wr_buf[0];
|
||
3456 | temp_raw = wr_buf[1];
|
||
3457 | |||
3458 | wr_buf[0] = 0x00; // Clear SAR enable |
||
3459 | dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
||
3460 | |||
3461 | return (((uint16)temp_raw<<8)|(vbat_raw)); |
||
3462 | } |
||
3463 | |||
3464 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3465 | * @fn dwt_convertrawtemperature()
|
||
3466 | *
|
||
3467 | * @brief this function takes in a raw temperature value and applies the conversion factor
|
||
3468 | * to give true temperature. The dwt_initialise needs to be called before call to this to
|
||
3469 | * ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
||
3470 | *
|
||
3471 | * input parameters:
|
||
3472 | * @param raw_temp - this is the 8-bit raw temperature value as read by dwt_readtempvbat
|
||
3473 | *
|
||
3474 | * output parameters:
|
||
3475 | *
|
||
3476 | * returns: temperature sensor value in degrees
|
||
3477 | */
|
||
3478 | float dwt_convertrawtemperature(uint8 raw_temp)
|
||
3479 | { |
||
3480 | float realtemp;
|
||
3481 | #ifdef DWT_API_ERROR_CHECK
|
||
3482 | assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
||
3483 | #endif
|
||
3484 | // the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
||
3485 | realtemp = ((raw_temp - pdw1000local->tempP) * SAR_TEMP_TO_CELCIUS_CONV) + 23 ;
|
||
3486 | |||
3487 | return realtemp;
|
||
3488 | } |
||
3489 | |||
3490 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3491 | * @fn dwt_convertdegtemptoraw()
|
||
3492 | *
|
||
3493 | * @brief this function takes in an externally measured temperature in 10ths of degrees Celcius
|
||
3494 | * and applies the conversion factor to give a value in IC temperature units, as produced by the SAR A/D.
|
||
3495 | * The dwt_initialise needs to be called before call to this to ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
||
3496 | *
|
||
3497 | * input parameters:
|
||
3498 | * @param externaltemp - this is the an externally measured temperature in 10ths of degrees Celcius to convert
|
||
3499 | *
|
||
3500 | * output parameters:
|
||
3501 | *
|
||
3502 | * returns: temperature sensor value in DW IC temperature units (1.14?C steps)
|
||
3503 | */
|
||
3504 | uint8 dwt_convertdegtemptoraw(int16 externaltemp) |
||
3505 | { |
||
3506 | int32 raw_temp; |
||
3507 | #ifdef DWT_API_ERROR_CHECK
|
||
3508 | assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
||
3509 | assert((externaltemp > -800) && (externaltemp < 1500)) |
||
3510 | #endif
|
||
3511 | // the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
||
3512 | raw_temp = ((externaltemp - 230 + 5) * DCELCIUS_TO_SAR_TEMP_CONV) ; //+5 for better rounding |
||
3513 | |||
3514 | if(raw_temp < 0) //negative |
||
3515 | { |
||
3516 | raw_temp = (-raw_temp >> 8) ;
|
||
3517 | raw_temp = -raw_temp ; |
||
3518 | } |
||
3519 | else
|
||
3520 | raw_temp = raw_temp >> 8 ;
|
||
3521 | |||
3522 | return (uint8) (raw_temp + pdw1000local->tempP);
|
||
3523 | } |
||
3524 | |||
3525 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3526 | * @fn dwt_convertrawvoltage()
|
||
3527 | *
|
||
3528 | * @brief this function takes in a raw voltage value and applies the conversion factor
|
||
3529 | * to give true voltage. The dwt_initialise needs to be called before call to this to
|
||
3530 | * ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP
|
||
3531 | *
|
||
3532 | * input parameters:
|
||
3533 | * @param raw_voltage - this is the 8-bit raw voltage value as read by dwt_readtempvbat
|
||
3534 | *
|
||
3535 | * output parameters:
|
||
3536 | *
|
||
3537 | * returns: voltage sensor value in volts
|
||
3538 | */
|
||
3539 | float dwt_convertrawvoltage(uint8 raw_voltage)
|
||
3540 | { |
||
3541 | float realvolt;
|
||
3542 | |||
3543 | #ifdef DWT_API_ERROR_CHECK
|
||
3544 | assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
||
3545 | #endif
|
||
3546 | // the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
||
3547 | realvolt = ((float)(raw_voltage - pdw1000local->vBatP) * SAR_VBAT_TO_VOLT_CONV) + 3.3 ; |
||
3548 | |||
3549 | return realvolt;
|
||
3550 | } |
||
3551 | |||
3552 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3553 | * @fn dwt_convertvoltstoraw()
|
||
3554 | *
|
||
3555 | * @brief this function takes in a true voltage in millivolts and applies the conversion factor to
|
||
3556 | * give a raw DW IC value. The dwt_initialise needs to be called before call to this to
|
||
3557 | * ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP.
|
||
3558 | *
|
||
3559 | * input parameters:
|
||
3560 | * @param realvolt - this is a true voltage in millivolts to convert
|
||
3561 | *
|
||
3562 | * output parameters:
|
||
3563 | *
|
||
3564 | * returns: voltage sensor value in DW IC voltage units
|
||
3565 | */
|
||
3566 | uint8 dwt_convertvoltstoraw(int32 externalmvolt) |
||
3567 | { |
||
3568 | uint32 raw_voltage; |
||
3569 | #ifdef DWT_API_ERROR_CHECK
|
||
3570 | assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
||
3571 | #endif
|
||
3572 | // the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
||
3573 | raw_voltage = ((externalmvolt - 3300) * MVOLT_TO_SAR_VBAT_CONV) + pdw1000local->vBatP ;
|
||
3574 | |||
3575 | return (uint8) raw_voltage;
|
||
3576 | } |
||
3577 | |||
3578 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3579 | * @fn dwt_readwakeuptemp()
|
||
3580 | *
|
||
3581 | * @brief this function reads the temperature of the DW1000 that was sampled
|
||
3582 | * on waking from Sleep/Deepsleep. They are not current values, but read on last
|
||
3583 | * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
||
3584 | *
|
||
3585 | * input parameters:
|
||
3586 | *
|
||
3587 | * output parameters:
|
||
3588 | *
|
||
3589 | * returns: 8-bit raw temperature sensor value
|
||
3590 | */
|
||
3591 | uint8 dwt_readwakeuptemp(void)
|
||
3592 | { |
||
3593 | return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LTEMP_OFFSET);
|
||
3594 | } |
||
3595 | |||
3596 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3597 | * @fn dwt_readwakeupvbat()
|
||
3598 | *
|
||
3599 | * @brief this function reads the battery voltage of the DW1000 that was sampled
|
||
3600 | * on waking from Sleep/Deepsleep. They are not current values, but read on last
|
||
3601 | * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
||
3602 | *
|
||
3603 | * input parameters:
|
||
3604 | *
|
||
3605 | * output parameters:
|
||
3606 | *
|
||
3607 | * returns: 8-bit raw battery voltage sensor value
|
||
3608 | */
|
||
3609 | uint8 dwt_readwakeupvbat(void)
|
||
3610 | { |
||
3611 | return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET);
|
||
3612 | } |
||
3613 | |||
3614 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3615 | * @fn dwt_calcbandwidthtempadj()
|
||
3616 | *
|
||
3617 | * @brief this function determines the corrected bandwidth setting (PG_DELAY register setting)
|
||
3618 | * of the DW1000 which changes over temperature.
|
||
3619 | *
|
||
3620 | * NOTE 1: SPI Frequency must be < 3MHz.
|
||
3621 | * NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
||
3622 | *
|
||
3623 | * input parameters:
|
||
3624 | * @param target_count - uint16 - the PG count target to reach in order to correct the bandwidth
|
||
3625 | *
|
||
3626 | * output parameters:
|
||
3627 | *
|
||
3628 | * returns: (uint32) The setting to be programmed into the PG_DELAY value
|
||
3629 | */
|
||
3630 | uint32 dwt_calcbandwidthtempadj(uint16 target_count) |
||
3631 | { |
||
3632 | int i;
|
||
3633 | uint8 bit_field, curr_bw; |
||
3634 | int32 delta_count = 0;
|
||
3635 | uint32 best_bw = 0;
|
||
3636 | uint16 raw_count = 0;
|
||
3637 | int32 delta_lowest; |
||
3638 | |||
3639 | // Used to store the current values of the registers so that they can be restored after
|
||
3640 | uint8 old_pmsc_ctrl0; |
||
3641 | uint16 old_pmsc_ctrl1; |
||
3642 | uint32 old_rf_conf_txpow_mask; |
||
3643 | |||
3644 | // Record the current values of these registers, to restore later
|
||
3645 | old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
||
3646 | old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
||
3647 | old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
||
3648 | |||
3649 | // Set clock to XTAL
|
||
3650 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
||
3651 | |||
3652 | // Disable sequencing
|
||
3653 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
||
3654 | |||
3655 | // Turn on CLK PLL, Mix Bias and PG
|
||
3656 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
||
3657 | |||
3658 | // Set sys and TX clock to PLL
|
||
3659 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
||
3660 | |||
3661 | // Set the MSB high for first guess
|
||
3662 | curr_bw = 0x80;
|
||
3663 | // Set starting bit
|
||
3664 | bit_field = 0x80;
|
||
3665 | // Initial lowest delta is the maximum difference that we should allow the count value to be from the target.
|
||
3666 | // If the algorithm is successful, it will be overwritten by a smaller value where the count value is closer
|
||
3667 | // to the target
|
||
3668 | delta_lowest = 300;
|
||
3669 | |||
3670 | for (i = 0; i < 7; i++) |
||
3671 | { |
||
3672 | // start with 0xc0 and test.
|
||
3673 | bit_field = bit_field >> 1;
|
||
3674 | curr_bw = curr_bw | bit_field; |
||
3675 | |||
3676 | // Write bw setting to PG_DELAY register
|
||
3677 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, curr_bw); |
||
3678 | |||
3679 | // Set cal direction and time
|
||
3680 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
||
3681 | |||
3682 | // Start cal
|
||
3683 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
||
3684 | // Allow cal to complete
|
||
3685 | deca_sleep(1);
|
||
3686 | |||
3687 | // Read count value from the PG cal block
|
||
3688 | raw_count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
||
3689 | |||
3690 | // lets keep track of the closest value to the target in case we overshoot
|
||
3691 | delta_count = abs((int)raw_count - (int)target_count); |
||
3692 | if (delta_count < delta_lowest)
|
||
3693 | { |
||
3694 | delta_lowest = delta_count; |
||
3695 | best_bw = curr_bw; |
||
3696 | } |
||
3697 | |||
3698 | // Test the count results
|
||
3699 | if (raw_count > target_count)
|
||
3700 | // Count was lower, BW was lower so increase PG DELAY
|
||
3701 | curr_bw = curr_bw | bit_field; |
||
3702 | else
|
||
3703 | // Count was higher
|
||
3704 | curr_bw = curr_bw & (~(bit_field)); |
||
3705 | } |
||
3706 | |||
3707 | // Restore old register values
|
||
3708 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
||
3709 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
||
3710 | dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
||
3711 | |||
3712 | // Returns the best PG_DELAY setting
|
||
3713 | return best_bw;
|
||
3714 | } |
||
3715 | |||
3716 | |||
3717 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3718 | * @fn _dwt_computetxpowersetting()
|
||
3719 | *
|
||
3720 | * @brief this function calculates the appropriate change to the TX_POWER register to compensate
|
||
3721 | * the TX power output at different temperatures.
|
||
3722 | *
|
||
3723 | * input parameters:
|
||
3724 | * @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
||
3725 | * @param power_adj - uint32 - the adjustment in power level to be made, in 0.5dB steps
|
||
3726 | *
|
||
3727 | * output parameters:
|
||
3728 | *
|
||
3729 | * returns: (uint32) The setting to be programmed into the TX_POWER register
|
||
3730 | */
|
||
3731 | uint32 _dwt_computetxpowersetting(uint32 ref_powerreg, int32 power_adj) |
||
3732 | { |
||
3733 | int8 da_attn_change, mixer_gain_change; |
||
3734 | uint8 current_da_attn, current_mixer_gain; |
||
3735 | uint8 new_da_attn, new_mixer_gain; |
||
3736 | uint32 new_regval = 0;
|
||
3737 | int i;
|
||
3738 | |||
3739 | for(i = 0; i < 4; i++) |
||
3740 | { |
||
3741 | da_attn_change = 0;
|
||
3742 | mixer_gain_change = power_adj; |
||
3743 | current_da_attn = ((ref_powerreg >> (i*8)) & 0xE0) >> 5; |
||
3744 | current_mixer_gain = (ref_powerreg >> (i*8)) & 0x1F; |
||
3745 | |||
3746 | // Mixer gain gives best performance between gain value of 4 and 20
|
||
3747 | while((current_mixer_gain + mixer_gain_change < 4) || |
||
3748 | (current_mixer_gain + mixer_gain_change > 20))
|
||
3749 | { |
||
3750 | // If mixer gain goes outside bounds, adjust the DA attenuation to compensate
|
||
3751 | if(current_mixer_gain + mixer_gain_change > 20) |
||
3752 | { |
||
3753 | da_attn_change -= 1;
|
||
3754 | |||
3755 | if(da_attn_change == 0) //DA attenuation has reached the max value |
||
3756 | { |
||
3757 | da_attn_change = 1; //restore the value and exit the loop - DA is at max allowed |
||
3758 | break;
|
||
3759 | } |
||
3760 | |||
3761 | mixer_gain_change -= (int8) (MIX_DA_FACTOR); |
||
3762 | } |
||
3763 | else if(current_mixer_gain + mixer_gain_change < 4) |
||
3764 | { |
||
3765 | da_attn_change += 1;
|
||
3766 | |||
3767 | if(da_attn_change == 0x8) //DA attenuation has reached the min value |
||
3768 | { |
||
3769 | da_attn_change = 7; //restore the value and exit the loop - DA is at min allowed |
||
3770 | break;
|
||
3771 | } |
||
3772 | |||
3773 | mixer_gain_change += (int8) (MIX_DA_FACTOR); |
||
3774 | } |
||
3775 | } |
||
3776 | |||
3777 | new_da_attn = (current_da_attn + da_attn_change) & 0x7;
|
||
3778 | new_mixer_gain = (current_mixer_gain + mixer_gain_change) & 0x1F;
|
||
3779 | |||
3780 | new_regval |= ((uint32) ((new_da_attn << 5) | new_mixer_gain)) << (i * 8); |
||
3781 | } |
||
3782 | |||
3783 | return (uint32)new_regval;
|
||
3784 | } |
||
3785 | |||
3786 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3787 | * @fn dwt_calcpowertempadj()
|
||
3788 | *
|
||
3789 | * @brief this function determines the corrected power setting (TX_POWER setting) for the
|
||
3790 | * DW1000 which changes over temperature.
|
||
3791 | *
|
||
3792 | * Note: only ch2 or ch5 are supported, if other channel is used - the COMP factor should be calculated and adjusted
|
||
3793 | *
|
||
3794 | * input parameters:
|
||
3795 | * @param channel - uint8 - the channel at which compensation of power level will be applied: 2 or 5
|
||
3796 | * @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
||
3797 | * @param delta_temp - int - the difference between current ambient temperature (raw value units)
|
||
3798 | * and the temperature at which reference measurements were made (raw value units)
|
||
3799 | |||
3800 | * output parameters: None
|
||
3801 | *
|
||
3802 | * returns: (uint32) The corrected TX_POWER register value
|
||
3803 | */
|
||
3804 | uint32 dwt_calcpowertempadj(uint8 channel, uint32 ref_powerreg, int delta_temp)
|
||
3805 | { |
||
3806 | int8 delta_power; |
||
3807 | int negative = 0; |
||
3808 | |||
3809 | if(delta_temp < 0) |
||
3810 | { |
||
3811 | negative = 1;
|
||
3812 | delta_temp = -delta_temp; //make (-)ve into (+)ve number
|
||
3813 | } |
||
3814 | |||
3815 | // Calculate the expected power differential at the current temperature
|
||
3816 | if(channel == 5) |
||
3817 | { |
||
3818 | delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH5) >> 12); //>>12 is same as /4096 |
||
3819 | } |
||
3820 | else if(channel == 2) |
||
3821 | { |
||
3822 | delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH2) >> 12); //>>12 is same as /4096 |
||
3823 | } |
||
3824 | else
|
||
3825 | delta_power = 0;
|
||
3826 | |||
3827 | if(negative == 1) |
||
3828 | { |
||
3829 | delta_power = -delta_power; //restore the sign
|
||
3830 | } |
||
3831 | |||
3832 | if(delta_power == 0) |
||
3833 | return ref_powerreg ; //no change to power register |
||
3834 | |||
3835 | // Adjust the TX_POWER register value
|
||
3836 | return _dwt_computetxpowersetting(ref_powerreg, delta_power);
|
||
3837 | } |
||
3838 | |||
3839 | /*! ------------------------------------------------------------------------------------------------------------------
|
||
3840 | * @fn dwt_calcpgcount()
|
||
3841 | *
|
||
3842 | * @brief this function calculates the value in the pulse generator counter register (PGC_STATUS) for a given PG_DELAY
|
||
3843 | * This is used to take a reference measurement, and the value recorded as the reference is used to adjust the
|
||
3844 | * bandwidth of the device when the temperature changes.
|
||
3845 | *
|
||
3846 | * NOTE 1: SPI Frequency must be < 3MHz.
|
||
3847 | * NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
||
3848 | *
|
||
3849 | * input parameters:
|
||
3850 | * @param pgdly - uint8 - the PG_DELAY to set (to control bandwidth), and to find the corresponding count value for
|
||
3851 | * output parameters: None
|
||
3852 | *
|
||
3853 | * returns: (uint16) PGC_STATUS count value calculated from the provided PG_DELAY value - used as reference for later
|
||
3854 | * bandwidth adjustments
|
||
3855 | */
|
||
3856 | uint16 dwt_calcpgcount(uint8 pgdly) |
||
3857 | { |
||
3858 | // Perform PG count read ten times and take an average to smooth out any noise
|
||
3859 | const int NUM_SAMPLES = 10; |
||
3860 | uint32 sum_count = 0;
|
||
3861 | uint16 average_count = 0, count = 0; |
||
3862 | int i = 0; |
||
3863 | |||
3864 | // Used to store the current values of the registers so that they can be restored after
|
||
3865 | uint8 old_pmsc_ctrl0; |
||
3866 | uint16 old_pmsc_ctrl1; |
||
3867 | uint32 old_rf_conf_txpow_mask; |
||
3868 | |||
3869 | // Record the current values of these registers, to restore later
|
||
3870 | old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
||
3871 | old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
||
3872 | old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
||
3873 | |||
3874 | // Set clock to XTAL
|
||
3875 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
||
3876 | // Disable sequencing
|
||
3877 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
||
3878 | // Turn on CLK PLL, Mix Bias and PG
|
||
3879 | dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
||
3880 | // Set sys and TX clock to PLL
|
||
3881 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
||
3882 | |||
3883 | for(i = 0; i < NUM_SAMPLES; i++) { |
||
3884 | // Write bw setting to PG_DELAY register
|
||
3885 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, pgdly); |
||
3886 | |||
3887 | // Set cal direction and time
|
||
3888 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
||
3889 | |||
3890 | // Start cal
|
||
3891 | dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
||
3892 | |||
3893 | // Allow cal to complete - the TC_PGCCTRL_CALSTART bit will clear automatically
|
||
3894 | deca_sleep(1);
|
||
3895 | |||
3896 | // Read count value from the PG cal block
|
||
3897 | count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
||
3898 | |||
3899 | sum_count += count; |
||
3900 | } |
||
3901 | |||
3902 | // Restore old register values
|
||
3903 | dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
||
3904 | dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
||
3905 | dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
||
3906 | |||
3907 | average_count = (int)(sum_count / NUM_SAMPLES);
|
||
3908 | return average_count;
|
||
3909 | } |
||
3910 | |||
3911 | |||
3912 | /* ===============================================================================================
|
||
3913 | List of expected (known) device ID handled by this software
|
||
3914 | ===============================================================================================
|
||
3915 | |||
3916 | 0xDECA0130 // DW1000 - MP
|
||
3917 | |||
3918 | ===============================================================================================
|
||
3919 | */
|
||
3920 |