amiro-lld / drivers / DW1000 / v2 / decadriver / deca_device.c @ f0dd1ac4
History | View | Annotate | Download (142.18 KB)
| 1 |
/*! ------------------------------------------------------------------------------------------------------------------
|
|---|---|
| 2 |
* @file deca_device.c
|
| 3 |
* @brief Decawave device configuration and control functions
|
| 4 |
*
|
| 5 |
* @attention
|
| 6 |
*
|
| 7 |
* Copyright 2013 (c) Decawave Ltd, Dublin, Ireland.
|
| 8 |
*
|
| 9 |
* All rights reserved.
|
| 10 |
*
|
| 11 |
*/
|
| 12 |
|
| 13 |
#include <assert.h> |
| 14 |
#include <stdlib.h> |
| 15 |
|
| 16 |
#include "deca_types.h" |
| 17 |
#include "deca_param_types.h" |
| 18 |
#include "deca_regs.h" |
| 19 |
#include "deca_device_api.h" |
| 20 |
|
| 21 |
// Defines for enable_clocks function
|
| 22 |
#define FORCE_SYS_XTI 0 |
| 23 |
#define ENABLE_ALL_SEQ 1 |
| 24 |
#define FORCE_SYS_PLL 2 |
| 25 |
#define READ_ACC_ON 7 |
| 26 |
#define READ_ACC_OFF 8 |
| 27 |
#define FORCE_OTP_ON 11 |
| 28 |
#define FORCE_OTP_OFF 12 |
| 29 |
#define FORCE_TX_PLL 13 |
| 30 |
#define FORCE_LDE 14 |
| 31 |
|
| 32 |
// Defines for ACK request bitmask in DATA and MAC COMMAND frame control (first byte) - Used to detect AAT bit wrongly set.
|
| 33 |
#define FCTRL_ACK_REQ_MASK 0x20 |
| 34 |
// Frame control maximum length in bytes.
|
| 35 |
#define FCTRL_LEN_MAX 2 |
| 36 |
|
| 37 |
// #define DWT_API_ERROR_CHECK // define so API checks config input parameters
|
| 38 |
|
| 39 |
// -------------------------------------------------------------------------------------------------------------------
|
| 40 |
//
|
| 41 |
// Internal functions for controlling and configuring the device
|
| 42 |
//
|
| 43 |
// -------------------------------------------------------------------------------------------------------------------
|
| 44 |
|
| 45 |
// Enable and Configure specified clocks
|
| 46 |
void _dwt_enableclocks(int clocks) ; |
| 47 |
// Configure the ucode (FP algorithm) parameters
|
| 48 |
void _dwt_configlde(int prf); |
| 49 |
// Load ucode from OTP/ROM
|
| 50 |
void _dwt_loaducodefromrom(void); |
| 51 |
// Read non-volatile memory
|
| 52 |
uint32 _dwt_otpread(uint16 address); |
| 53 |
// Program the non-volatile memory
|
| 54 |
uint32 _dwt_otpprogword32(uint32 data, uint16 address); |
| 55 |
// Upload the device configuration into always on memory
|
| 56 |
void _dwt_aonarrayupload(void); |
| 57 |
// -------------------------------------------------------------------------------------------------------------------
|
| 58 |
|
| 59 |
/*!
|
| 60 |
* Static data for DW1000 DecaWave Transceiver control
|
| 61 |
*/
|
| 62 |
|
| 63 |
// -------------------------------------------------------------------------------------------------------------------
|
| 64 |
// Structure to hold device data
|
| 65 |
typedef struct |
| 66 |
{
|
| 67 |
uint32 partID ; // IC Part ID - read during initialisation
|
| 68 |
uint32 lotID ; // IC Lot ID - read during initialisation
|
| 69 |
uint8 vBatP ; // IC V bat read during production and stored in OTP (Vmeas @ 3V3)
|
| 70 |
uint8 tempP ; // IC V temp read during production and stored in OTP (Tmeas @ 23C)
|
| 71 |
uint8 longFrames ; // Flag in non-standard long frame mode
|
| 72 |
uint8 otprev ; // OTP revision number (read during initialisation)
|
| 73 |
uint32 txFCTRL ; // Keep TX_FCTRL register config
|
| 74 |
uint32 sysCFGreg ; // Local copy of system config register
|
| 75 |
uint8 dblbuffon; // Double RX buffer mode flag
|
| 76 |
uint8 wait4resp ; // wait4response was set with last TX start command
|
| 77 |
uint16 sleep_mode; // Used for automatic reloading of LDO tune and microcode at wake-up
|
| 78 |
uint16 otp_mask ; // Local copy of the OTP mask used in dwt_initialise call
|
| 79 |
dwt_cb_data_t cbData; // Callback data structure
|
| 80 |
dwt_cb_t cbTxDone; // Callback for TX confirmation event
|
| 81 |
dwt_cb_t cbRxOk; // Callback for RX good frame event
|
| 82 |
dwt_cb_t cbRxTo; // Callback for RX timeout events
|
| 83 |
dwt_cb_t cbRxErr; // Callback for RX error events
|
| 84 |
} dwt_local_data_t ; |
| 85 |
|
| 86 |
static dwt_local_data_t dw1000local[DWT_NUM_DW_DEV] ; // Static local device data, can be an array to support multiple DW1000 testing applications/platforms |
| 87 |
static dwt_local_data_t *pdw1000local = dw1000local ; // Static local data structure pointer |
| 88 |
|
| 89 |
|
| 90 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 91 |
* @fn dwt_apiversion()
|
| 92 |
*
|
| 93 |
* @brief This function returns the version of the API as defined by DW1000_DRIVER_VERSION
|
| 94 |
*
|
| 95 |
* input parameters
|
| 96 |
*
|
| 97 |
* output parameters
|
| 98 |
*
|
| 99 |
* returns version (DW1000_DRIVER_VERSION)
|
| 100 |
*/
|
| 101 |
int32 dwt_apiversion(void)
|
| 102 |
{
|
| 103 |
return DW1000_DRIVER_VERSION ;
|
| 104 |
} |
| 105 |
|
| 106 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 107 |
* @fn dwt_setlocaldataptr()
|
| 108 |
*
|
| 109 |
* @brief This function sets the local data structure pointer to point to the element in the local array as given by the index.
|
| 110 |
*
|
| 111 |
* input parameters
|
| 112 |
* @param index - selects the array element to point to. Must be within the array bounds, i.e. < DWT_NUM_DW_DEV
|
| 113 |
*
|
| 114 |
* output parameters
|
| 115 |
*
|
| 116 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 117 |
*/
|
| 118 |
int dwt_setlocaldataptr(unsigned int index) |
| 119 |
{
|
| 120 |
// Check the index is within the array bounds
|
| 121 |
if (DWT_NUM_DW_DEV <= index) // return error if index outside the array bounds |
| 122 |
{
|
| 123 |
return DWT_ERROR ;
|
| 124 |
} |
| 125 |
|
| 126 |
pdw1000local = &dw1000local[index]; |
| 127 |
|
| 128 |
return DWT_SUCCESS ;
|
| 129 |
} |
| 130 |
|
| 131 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 132 |
* @fn dwt_initialise()
|
| 133 |
*
|
| 134 |
* @brief This function initiates communications with the DW1000 transceiver
|
| 135 |
* and reads its DEV_ID register (address 0x00) to verify the IC is one supported
|
| 136 |
* by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it
|
| 137 |
* does any initial once only device configurations needed for its use and initialises
|
| 138 |
* as necessary any static data items belonging to this low-level driver.
|
| 139 |
*
|
| 140 |
* This function does not need to be called after DW1000 device is woken up from DEEPSLEEP,
|
| 141 |
* the device will preserve register values e.g. LDO, UCODE, XTAL. However if needed this
|
| 142 |
* function can be called to initialise internal structure dw1000local[] if it has not been preserved
|
| 143 |
* (e.g. if micro was in sleep and its RAM data (containing dw1000local structure was not preserved during sleep)
|
| 144 |
*
|
| 145 |
* NOTES:
|
| 146 |
* 1. When DW1000 is powered on this function needs to be run before dwt_configuresleep,
|
| 147 |
* also the SPI frequency has to be < 3MHz
|
| 148 |
* 2. It reads and applies LDO tune and crystal trim values from OTP memory
|
| 149 |
* 3. If accurate RX timestamping is needed microcode/LDE must be loaded
|
| 150 |
*
|
| 151 |
* input parameters
|
| 152 |
* @param config - specifies what configuration to load
|
| 153 |
* DWT_LOADNONE 0x00 - do not load any values from OTP memory
|
| 154 |
* DWT_LOADUCODE 0x01 - load the LDE microcode from ROM - enable accurate RX timestamp
|
| 155 |
* DWT_DW_WAKE_UP 0x02 - just initialise dw1000local[] values (e.g. DW1000 has woken up)
|
| 156 |
* DWT_DW_WUP_NO_UCODE 0x04 - if microcode/LDE algorithm has not already been loaded (on power up) e.g. when LDE is not used
|
| 157 |
* DWT_READ_OTP_PID 0x10 - read part ID from OTP
|
| 158 |
* DWT_READ_OTP_LID 0x20 - read lot ID from OTP
|
| 159 |
* DWT_READ_OTP_BAT 0x40 - read ref voltage from OTP
|
| 160 |
* DWT_READ_OTP_TMP 0x80 - read ref temperature from OTP
|
| 161 |
* output parameters
|
| 162 |
*
|
| 163 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 164 |
*/
|
| 165 |
// OTP addresses definitions
|
| 166 |
#define LDOTUNE_ADDRESS (0x04) |
| 167 |
#define PARTID_ADDRESS (0x06) |
| 168 |
#define LOTID_ADDRESS (0x07) |
| 169 |
#define VBAT_ADDRESS (0x08) |
| 170 |
#define VTEMP_ADDRESS (0x09) |
| 171 |
#define XTRIM_ADDRESS (0x1E) |
| 172 |
|
| 173 |
int dwt_initialise(int config) |
| 174 |
{
|
| 175 |
uint16 otp_xtaltrim_and_rev = 0;
|
| 176 |
uint32 ldo_tune = 0;
|
| 177 |
|
| 178 |
pdw1000local->dblbuffon = 0; // - set to 0 - meaning double buffer mode is off by default |
| 179 |
pdw1000local->wait4resp = 0; // - set to 0 - meaning wait for response not active |
| 180 |
pdw1000local->sleep_mode = 0; // - set to 0 - meaning sleep mode has not been configured |
| 181 |
|
| 182 |
pdw1000local->cbTxDone = NULL;
|
| 183 |
pdw1000local->cbRxOk = NULL;
|
| 184 |
pdw1000local->cbRxTo = NULL;
|
| 185 |
pdw1000local->cbRxErr = NULL;
|
| 186 |
|
| 187 |
#if DWT_API_ERROR_CHECK
|
| 188 |
pdw1000local->otp_mask = config ; // Save the READ_OTP config mask
|
| 189 |
#endif
|
| 190 |
|
| 191 |
// Read and validate device ID, return -1 if not recognised
|
| 192 |
if (DWT_DEVICE_ID != dwt_readdevid()) // MP IC ONLY (i.e. DW1000) FOR THIS CODE |
| 193 |
{
|
| 194 |
return DWT_ERROR ;
|
| 195 |
} |
| 196 |
|
| 197 |
if(!(DWT_DW_WAKE_UP & config)) // Don't reset the device if DWT_DW_WAKE_UP bit is set, e.g. when calling this API after wake up |
| 198 |
{
|
| 199 |
dwt_softreset(); // Make sure the device is completely reset before starting initialisation
|
| 200 |
} |
| 201 |
|
| 202 |
if(!((DWT_DW_WAKE_UP & config) && ((DWT_READ_OTP_TMP | DWT_READ_OTP_BAT | DWT_READ_OTP_LID | DWT_READ_OTP_PID | DWT_DW_WUP_RD_OTPREV)& config)))
|
| 203 |
{
|
| 204 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read by _dwt_otpread are reliable
|
| 205 |
} // when not reading from OTP, clocks don't need to change.
|
| 206 |
|
| 207 |
// Configure the CPLL lock detect
|
| 208 |
dwt_write8bitoffsetreg(EXT_SYNC_ID, EC_CTRL_OFFSET, EC_CTRL_PLLLCK); |
| 209 |
|
| 210 |
// When DW1000 IC is initialised from power up, then the LDO value should be kicked from OTP, otherwise if this API is called after
|
| 211 |
// DW1000 IC has been woken up (DWT_DW_WAKE_UP bit is set) this can be skipped as LDO would have already been automatically
|
| 212 |
// kicked/loaded on wake up
|
| 213 |
if(!(DWT_DW_WAKE_UP & config))
|
| 214 |
{
|
| 215 |
// Load LDO tune from OTP and kick it if there is a value actually programmed.
|
| 216 |
ldo_tune = _dwt_otpread(LDOTUNE_ADDRESS); |
| 217 |
if((ldo_tune & 0xFF) != 0) |
| 218 |
{
|
| 219 |
// Kick LDO tune
|
| 220 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_SF, OTP_SF_LDO_KICK); // Set load LDO kick bit
|
| 221 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; // LDO tune must be kicked at wake-up
|
| 222 |
} |
| 223 |
} |
| 224 |
else
|
| 225 |
{ //if LDOTUNE reg contains value different from default it means it was kicked from OTP and thus set AON_WCFG_ONW_LLDO.
|
| 226 |
if(dwt_read32bitoffsetreg(RF_CONF_ID, LDOTUNE) != LDOTUNE_DEFAULT)
|
| 227 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; |
| 228 |
} |
| 229 |
|
| 230 |
if((!(DWT_DW_WAKE_UP & config)) || ((DWT_DW_WAKE_UP & config) && (DWT_DW_WUP_RD_OTPREV & config)))
|
| 231 |
{
|
| 232 |
// Read OTP revision number
|
| 233 |
otp_xtaltrim_and_rev = _dwt_otpread(XTRIM_ADDRESS) & 0xffff; // Read 32 bit value, XTAL trim val is in low octet-0 (5 bits) |
| 234 |
pdw1000local->otprev = (otp_xtaltrim_and_rev >> 8) & 0xff; // OTP revision is the next byte |
| 235 |
} |
| 236 |
else
|
| 237 |
pdw1000local->otprev = 0; // If OTP valuse are not used, if this API is called after DW1000 IC has been woken up |
| 238 |
// (DWT_DW_WAKE_UP bit is set), set otprev to 0
|
| 239 |
|
| 240 |
if(!(DWT_DW_WAKE_UP & config))
|
| 241 |
{
|
| 242 |
// XTAL trim value is set in OTP for DW1000 module and EVK/TREK boards but that might not be the case in a custom design
|
| 243 |
if ((otp_xtaltrim_and_rev & 0x1F) == 0) // A value of 0 means that the crystal has not been trimmed |
| 244 |
{
|
| 245 |
otp_xtaltrim_and_rev = FS_XTALT_MIDRANGE ; // Set to mid-range if no calibration value inside
|
| 246 |
} |
| 247 |
// Configure XTAL trim
|
| 248 |
dwt_setxtaltrim((uint8)otp_xtaltrim_and_rev); |
| 249 |
} |
| 250 |
|
| 251 |
if(DWT_READ_OTP_PID & config)
|
| 252 |
{
|
| 253 |
// Load Part from OTP
|
| 254 |
pdw1000local->partID = _dwt_otpread(PARTID_ADDRESS); |
| 255 |
} |
| 256 |
else
|
| 257 |
{
|
| 258 |
pdw1000local->partID = 0;
|
| 259 |
} |
| 260 |
|
| 261 |
if(DWT_READ_OTP_LID & config)
|
| 262 |
{
|
| 263 |
// Load Lot ID from OTP
|
| 264 |
pdw1000local->lotID = _dwt_otpread(LOTID_ADDRESS); |
| 265 |
} |
| 266 |
else
|
| 267 |
{
|
| 268 |
pdw1000local->lotID = 0;
|
| 269 |
} |
| 270 |
|
| 271 |
if(DWT_READ_OTP_BAT & config)
|
| 272 |
{
|
| 273 |
// Load VBAT from OTP
|
| 274 |
pdw1000local->vBatP = _dwt_otpread(VBAT_ADDRESS) & 0xff;
|
| 275 |
} |
| 276 |
else
|
| 277 |
{
|
| 278 |
pdw1000local->vBatP = 0;
|
| 279 |
} |
| 280 |
|
| 281 |
if(DWT_READ_OTP_TMP & config)
|
| 282 |
{
|
| 283 |
// Load TEMP from OTP
|
| 284 |
pdw1000local->tempP = _dwt_otpread(VTEMP_ADDRESS) & 0xff;
|
| 285 |
} |
| 286 |
else
|
| 287 |
{
|
| 288 |
pdw1000local->tempP = 0;
|
| 289 |
} |
| 290 |
|
| 291 |
// Load leading edge detect code (LDE/microcode)
|
| 292 |
if(!(DWT_DW_WAKE_UP & config))
|
| 293 |
{
|
| 294 |
if(DWT_LOADUCODE & config)
|
| 295 |
{
|
| 296 |
_dwt_loaducodefromrom(); |
| 297 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; // microcode must be loaded at wake-up if loaded on initialisation
|
| 298 |
} |
| 299 |
else // Should disable the LDERUN bit enable if LDE has not been loaded |
| 300 |
{
|
| 301 |
uint16 rega = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1) ;
|
| 302 |
rega &= 0xFDFF ; // Clear LDERUN bit |
| 303 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1, rega) ;
|
| 304 |
} |
| 305 |
} |
| 306 |
else //if DWT_DW_WUP_NO_UCODE is set then assume that the UCODE was loaded from ROM (i.e. DWT_LOADUCODE was set on power up), |
| 307 |
{ //thus set AON_WCFG_ONW_LLDE, otherwise don't set the AON_WCFG_ONW_LLDE bit in the sleep_mode configuration
|
| 308 |
if((DWT_DW_WUP_NO_UCODE & config) == 0) |
| 309 |
{
|
| 310 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; |
| 311 |
} |
| 312 |
} |
| 313 |
|
| 314 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
| 315 |
|
| 316 |
// The 3 bits in AON CFG1 register must be cleared to ensure proper operation of the DW1000 in DEEPSLEEP mode.
|
| 317 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
| 318 |
|
| 319 |
// Read system register / store local copy
|
| 320 |
pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
| 321 |
pdw1000local->longFrames = (pdw1000local->sysCFGreg & SYS_CFG_PHR_MODE_11) >> SYS_CFG_PHR_MODE_SHFT ; //configure longFrames
|
| 322 |
|
| 323 |
pdw1000local->txFCTRL = dwt_read32bitreg(TX_FCTRL_ID) ; |
| 324 |
|
| 325 |
return DWT_SUCCESS ;
|
| 326 |
|
| 327 |
} // end dwt_initialise()
|
| 328 |
|
| 329 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 330 |
* @fn dwt_otprevision()
|
| 331 |
*
|
| 332 |
* @brief This is used to return the read OTP revision
|
| 333 |
*
|
| 334 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
| 335 |
*
|
| 336 |
* input parameters
|
| 337 |
*
|
| 338 |
* output parameters
|
| 339 |
*
|
| 340 |
* returns the read OTP revision value
|
| 341 |
*/
|
| 342 |
uint8 dwt_otprevision(void)
|
| 343 |
{
|
| 344 |
return pdw1000local->otprev ;
|
| 345 |
} |
| 346 |
|
| 347 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 348 |
* @fn dwt_setfinegraintxseq()
|
| 349 |
*
|
| 350 |
* @brief This function enables/disables the fine grain TX sequencing (enabled by default).
|
| 351 |
*
|
| 352 |
* input parameters
|
| 353 |
* @param enable - 1 to enable fine grain TX sequencing, 0 to disable it.
|
| 354 |
*
|
| 355 |
* output parameters none
|
| 356 |
*
|
| 357 |
* no return value
|
| 358 |
*/
|
| 359 |
void dwt_setfinegraintxseq(int enable) |
| 360 |
{
|
| 361 |
if (enable)
|
| 362 |
{
|
| 363 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_ENABLE); |
| 364 |
} |
| 365 |
else
|
| 366 |
{
|
| 367 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_DISABLE); |
| 368 |
} |
| 369 |
} |
| 370 |
|
| 371 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 372 |
* @fn dwt_setlnapamode()
|
| 373 |
*
|
| 374 |
* @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual.
|
| 375 |
* This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity.
|
| 376 |
*
|
| 377 |
* NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using
|
| 378 |
* dwt_setfinegraintxseq().
|
| 379 |
*
|
| 380 |
* input parameters
|
| 381 |
* @param lna_pa - bit field: bit 0 if set will enable LNA functionality,
|
| 382 |
* : bit 1 if set will enable PA functionality,
|
| 383 |
* : to disable LNA/PA set the bits to 0
|
| 384 |
*
|
| 385 |
* no return value
|
| 386 |
*/
|
| 387 |
void dwt_setlnapamode(int lna_pa) |
| 388 |
{
|
| 389 |
uint32 gpio_mode = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
| 390 |
gpio_mode &= ~(GPIO_MSGP4_MASK | GPIO_MSGP5_MASK | GPIO_MSGP6_MASK); |
| 391 |
if (lna_pa & DWT_LNA_ENABLE)
|
| 392 |
{
|
| 393 |
gpio_mode |= GPIO_PIN6_EXTRXE; |
| 394 |
} |
| 395 |
if (lna_pa & DWT_PA_ENABLE)
|
| 396 |
{
|
| 397 |
gpio_mode |= (GPIO_PIN5_EXTTXE | GPIO_PIN4_EXTPA); |
| 398 |
} |
| 399 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, gpio_mode); |
| 400 |
} |
| 401 |
|
| 402 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 403 |
* @fn dwt_enablegpioclocks()
|
| 404 |
*
|
| 405 |
* @brief This is used to enable GPIO clocks. The clocks are needed to ensure correct GPIO operation
|
| 406 |
*
|
| 407 |
* input parameters
|
| 408 |
*
|
| 409 |
* output parameters
|
| 410 |
*
|
| 411 |
* no return value
|
| 412 |
*/
|
| 413 |
void dwt_enablegpioclocks(void) |
| 414 |
{
|
| 415 |
uint32 pmsc_clock_ctrl = dwt_read32bitreg(PMSC_ID); |
| 416 |
dwt_write32bitreg(PMSC_ID, pmsc_clock_ctrl | PMSC_CTRL0_GPCE | PMSC_CTRL0_GPRN) ; |
| 417 |
} |
| 418 |
|
| 419 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 420 |
* @fn dwt_setgpiodirection()
|
| 421 |
*
|
| 422 |
* @brief This is used to set GPIO direction as an input (1) or output (0)
|
| 423 |
*
|
| 424 |
* input parameters
|
| 425 |
* @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file
|
| 426 |
* @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file
|
| 427 |
*
|
| 428 |
* output parameters
|
| 429 |
*
|
| 430 |
* no return value
|
| 431 |
*/
|
| 432 |
void dwt_setgpiodirection(uint32 gpioNum, uint32 direction)
|
| 433 |
{
|
| 434 |
uint8 buf[GPIO_DIR_LEN]; |
| 435 |
uint32 command = direction | gpioNum; |
| 436 |
|
| 437 |
buf[0] = command & 0xff; |
| 438 |
buf[1] = (command >> 8) & 0xff; |
| 439 |
buf[2] = (command >> 16) & 0xff; |
| 440 |
|
| 441 |
dwt_writetodevice(GPIO_CTRL_ID, GPIO_DIR_OFFSET, GPIO_DIR_LEN, buf); |
| 442 |
} |
| 443 |
|
| 444 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 445 |
* @fn dwt_setgpiovalue()
|
| 446 |
*
|
| 447 |
* @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output
|
| 448 |
*
|
| 449 |
* input parameters
|
| 450 |
* @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
| 451 |
* @param value - this sets the GPIO value - see DWT_GxP0... DWT_GxP8
|
| 452 |
*
|
| 453 |
* output parameters
|
| 454 |
*
|
| 455 |
* no return value
|
| 456 |
*/
|
| 457 |
void dwt_setgpiovalue(uint32 gpioNum, uint32 value)
|
| 458 |
{
|
| 459 |
uint8 buf[GPIO_DOUT_LEN]; |
| 460 |
uint32 command = value | gpioNum; |
| 461 |
|
| 462 |
buf[0] = command & 0xff; |
| 463 |
buf[1] = (command >> 8) & 0xff; |
| 464 |
buf[2] = (command >> 16) & 0xff; |
| 465 |
|
| 466 |
dwt_writetodevice(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, GPIO_DOUT_LEN, buf); |
| 467 |
} |
| 468 |
|
| 469 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 470 |
* @fn dwt_getgpiovalue()
|
| 471 |
*
|
| 472 |
* @brief This is used to return 1 or 0 depending if the depending if the GPIO is high or low, only one GPIO should
|
| 473 |
* be tested at a time
|
| 474 |
*
|
| 475 |
* input parameters
|
| 476 |
* @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
| 477 |
*
|
| 478 |
* output parameters
|
| 479 |
*
|
| 480 |
* return int (1 or 0)
|
| 481 |
*/
|
| 482 |
int dwt_getgpiovalue(uint32 gpioNum)
|
| 483 |
{
|
| 484 |
return ((dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_RAW_OFFSET) & gpioNum)? 1 : 0); |
| 485 |
} |
| 486 |
|
| 487 |
|
| 488 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 489 |
* @fn dwt_geticrefvolt()
|
| 490 |
*
|
| 491 |
* @brief This is used to return the read V measured @ 3.3 V value recorded in OTP address 0x8 (VBAT_ADDRESS)
|
| 492 |
*
|
| 493 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
| 494 |
*
|
| 495 |
* input parameters
|
| 496 |
*
|
| 497 |
* output parameters
|
| 498 |
*
|
| 499 |
* returns the 8 bit V bat value as programmed in the factory
|
| 500 |
*/
|
| 501 |
uint8 dwt_geticrefvolt(void)
|
| 502 |
{
|
| 503 |
#ifdef DWT_API_ERROR_CHECK
|
| 504 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
| 505 |
#endif
|
| 506 |
return pdw1000local->vBatP;
|
| 507 |
} |
| 508 |
|
| 509 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 510 |
* @fn dwt_geticreftemp()
|
| 511 |
*
|
| 512 |
* @brief This is used to return the read T measured @ 23 C value recorded in OTP address 0x9 (VTEMP_ADDRESS)
|
| 513 |
*
|
| 514 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
| 515 |
*
|
| 516 |
* input parameters
|
| 517 |
*
|
| 518 |
* output parameters
|
| 519 |
*
|
| 520 |
* returns the 8 bit V temp value as programmed in the factory
|
| 521 |
*/
|
| 522 |
uint8 dwt_geticreftemp(void)
|
| 523 |
{
|
| 524 |
#ifdef DWT_API_ERROR_CHECK
|
| 525 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
| 526 |
#endif
|
| 527 |
return pdw1000local->tempP;
|
| 528 |
} |
| 529 |
|
| 530 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 531 |
* @fn dwt_getpartid()
|
| 532 |
*
|
| 533 |
* @brief This is used to return the read part ID (or chip ID) of the device
|
| 534 |
*
|
| 535 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value (stored in OTP).
|
| 536 |
*
|
| 537 |
* input parameters
|
| 538 |
*
|
| 539 |
* output parameters
|
| 540 |
*
|
| 541 |
* returns the 32 bit part ID (or chip ID) value as programmed in the factory
|
| 542 |
*/
|
| 543 |
uint32 dwt_getpartid(void)
|
| 544 |
{
|
| 545 |
#ifdef DWT_API_ERROR_CHECK
|
| 546 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_PID); |
| 547 |
#endif
|
| 548 |
|
| 549 |
return pdw1000local->partID;
|
| 550 |
} |
| 551 |
|
| 552 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 553 |
* @fn dwt_getlotid()
|
| 554 |
*
|
| 555 |
* @brief This is used to return the read lot ID of the device
|
| 556 |
*
|
| 557 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
| 558 |
*
|
| 559 |
* input parameters
|
| 560 |
*
|
| 561 |
* output parameters
|
| 562 |
*
|
| 563 |
* returns the 32 bit lot ID value as programmed in the factory
|
| 564 |
*/
|
| 565 |
uint32 dwt_getlotid(void)
|
| 566 |
{
|
| 567 |
#ifdef DWT_API_ERROR_CHECK
|
| 568 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_LID); |
| 569 |
#endif
|
| 570 |
|
| 571 |
return pdw1000local->lotID;
|
| 572 |
} |
| 573 |
|
| 574 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 575 |
* @fn dwt_readdevid()
|
| 576 |
*
|
| 577 |
* @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130)
|
| 578 |
*
|
| 579 |
* input parameters
|
| 580 |
*
|
| 581 |
* output parameters
|
| 582 |
*
|
| 583 |
* returns the read value which for DW1000 is 0xDECA0130
|
| 584 |
*/
|
| 585 |
uint32 dwt_readdevid(void)
|
| 586 |
{
|
| 587 |
return dwt_read32bitoffsetreg(DEV_ID_ID,0); |
| 588 |
} |
| 589 |
|
| 590 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 591 |
* @fn dwt_configuretxrf()
|
| 592 |
*
|
| 593 |
* @brief This function provides the API for the configuration of the TX spectrum
|
| 594 |
* including the power and pulse generator delay. The input is a pointer to the data structure
|
| 595 |
* of type dwt_txconfig_t that holds all the configurable items.
|
| 596 |
*
|
| 597 |
* input parameters
|
| 598 |
* @param config - pointer to the txrf configuration structure, which contains the tx rf config data
|
| 599 |
*
|
| 600 |
* output parameters
|
| 601 |
*
|
| 602 |
* no return value
|
| 603 |
*/
|
| 604 |
void dwt_configuretxrf(dwt_txconfig_t *config)
|
| 605 |
{
|
| 606 |
|
| 607 |
// Configure RF TX PG_DELAY
|
| 608 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, config->PGdly); |
| 609 |
|
| 610 |
// Configure TX power
|
| 611 |
dwt_write32bitreg(TX_POWER_ID, config->power); |
| 612 |
|
| 613 |
} |
| 614 |
|
| 615 |
|
| 616 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 617 |
* @fn dwt_configurefor64plen()
|
| 618 |
* - Use default OPS table should be used with following register modifications:
|
| 619 |
* These modifications optimise the default OPS configuration further for 64 length preamble use case
|
| 620 |
*
|
| 621 |
* NOTE: These register settings are not preserved during SLEEP/DEEPSLEEP, thus they should be programmed again after wake up
|
| 622 |
*
|
| 623 |
* input parameters
|
| 624 |
* @param prf
|
| 625 |
*
|
| 626 |
* output parameters
|
| 627 |
*
|
| 628 |
* no return value
|
| 629 |
*/
|
| 630 |
void dwt_configurefor64plen(int prf) |
| 631 |
{
|
| 632 |
dwt_write8bitoffsetreg(CRTR_ID, CRTR_GEAR_OFFSET, DEMOD_GEAR_64L); |
| 633 |
|
| 634 |
if(prf == DWT_PRF_16M)
|
| 635 |
{
|
| 636 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF16);
|
| 637 |
} |
| 638 |
else
|
| 639 |
{
|
| 640 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF64);
|
| 641 |
} |
| 642 |
} |
| 643 |
|
| 644 |
|
| 645 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 646 |
* @fn dwt_configure()
|
| 647 |
*
|
| 648 |
* @brief This function provides the main API for the configuration of the
|
| 649 |
* DW1000 and this low-level driver. The input is a pointer to the data structure
|
| 650 |
* of type dwt_config_t that holds all the configurable items.
|
| 651 |
* The dwt_config_t structure shows which ones are supported
|
| 652 |
*
|
| 653 |
* input parameters
|
| 654 |
* @param config - pointer to the configuration structure, which contains the device configuration data.
|
| 655 |
*
|
| 656 |
* output parameters
|
| 657 |
*
|
| 658 |
* no return value
|
| 659 |
*/
|
| 660 |
void dwt_configure(dwt_config_t *config)
|
| 661 |
{
|
| 662 |
uint8 nsSfd_result = 0;
|
| 663 |
uint8 useDWnsSFD = 0;
|
| 664 |
uint8 chan = config->chan ; |
| 665 |
uint32 regval ; |
| 666 |
uint16 reg16 = lde_replicaCoeff[config->rxCode]; |
| 667 |
uint8 prfIndex = config->prf - DWT_PRF_16M; |
| 668 |
uint8 bw = ((chan == 4) || (chan == 7)) ? 1 : 0 ; // Select wide or narrow band |
| 669 |
|
| 670 |
#ifdef DWT_API_ERROR_CHECK
|
| 671 |
assert(config->dataRate <= DWT_BR_6M8); |
| 672 |
assert(config->rxPAC <= DWT_PAC64); |
| 673 |
assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
| 674 |
assert(((config->prf == DWT_PRF_64M) && (config->txCode >= 9) && (config->txCode <= 24)) |
| 675 |
|| ((config->prf == DWT_PRF_16M) && (config->txCode >= 1) && (config->txCode <= 8))); |
| 676 |
assert(((config->prf == DWT_PRF_64M) && (config->rxCode >= 9) && (config->rxCode <= 24)) |
| 677 |
|| ((config->prf == DWT_PRF_16M) && (config->rxCode >= 1) && (config->rxCode <= 8))); |
| 678 |
assert((config->txPreambLength == DWT_PLEN_64) || (config->txPreambLength == DWT_PLEN_128) || (config->txPreambLength == DWT_PLEN_256) |
| 679 |
|| (config->txPreambLength == DWT_PLEN_512) || (config->txPreambLength == DWT_PLEN_1024) || (config->txPreambLength == DWT_PLEN_1536) |
| 680 |
|| (config->txPreambLength == DWT_PLEN_2048) || (config->txPreambLength == DWT_PLEN_4096)); |
| 681 |
assert((config->phrMode == DWT_PHRMODE_STD) || (config->phrMode == DWT_PHRMODE_EXT)); |
| 682 |
#endif
|
| 683 |
|
| 684 |
// For 110 kbps we need a special setup
|
| 685 |
if(DWT_BR_110K == config->dataRate)
|
| 686 |
{
|
| 687 |
pdw1000local->sysCFGreg |= SYS_CFG_RXM110K ; |
| 688 |
reg16 >>= 3; // lde_replicaCoeff must be divided by 8 |
| 689 |
} |
| 690 |
else
|
| 691 |
{
|
| 692 |
pdw1000local->sysCFGreg &= (~SYS_CFG_RXM110K) ; |
| 693 |
} |
| 694 |
|
| 695 |
pdw1000local->longFrames = config->phrMode ; |
| 696 |
|
| 697 |
pdw1000local->sysCFGreg &= ~SYS_CFG_PHR_MODE_11; |
| 698 |
pdw1000local->sysCFGreg |= (SYS_CFG_PHR_MODE_11 & ((uint32)config->phrMode << SYS_CFG_PHR_MODE_SHFT)); |
| 699 |
|
| 700 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
| 701 |
// Set the lde_replicaCoeff
|
| 702 |
dwt_write16bitoffsetreg(LDE_IF_ID, LDE_REPC_OFFSET, reg16) ; |
| 703 |
|
| 704 |
_dwt_configlde(prfIndex); |
| 705 |
|
| 706 |
// Configure PLL2/RF PLL block CFG/TUNE (for a given channel)
|
| 707 |
dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
| 708 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
| 709 |
|
| 710 |
// Configure RF RX blocks (for specified channel/bandwidth)
|
| 711 |
dwt_write8bitoffsetreg(RF_CONF_ID, RF_RXCTRLH_OFFSET, rx_config[bw]); |
| 712 |
|
| 713 |
// Configure RF TX blocks (for specified channel and PRF)
|
| 714 |
// Configure RF TX control
|
| 715 |
dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
| 716 |
|
| 717 |
// Configure the baseband parameters (for specified PRF, bit rate, PAC, and SFD settings)
|
| 718 |
// DTUNE0
|
| 719 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE0b_OFFSET, sftsh[config->dataRate][config->nsSFD]); |
| 720 |
|
| 721 |
// DTUNE1
|
| 722 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1a_OFFSET, dtune1[prfIndex]); |
| 723 |
|
| 724 |
if(config->dataRate == DWT_BR_110K)
|
| 725 |
{
|
| 726 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_110K); |
| 727 |
} |
| 728 |
else
|
| 729 |
{
|
| 730 |
if(config->txPreambLength == DWT_PLEN_64)
|
| 731 |
{
|
| 732 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_6M8_PRE64); |
| 733 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE64); |
| 734 |
} |
| 735 |
else
|
| 736 |
{
|
| 737 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_850K_6M8); |
| 738 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE128PLUS); |
| 739 |
} |
| 740 |
} |
| 741 |
|
| 742 |
// DTUNE2
|
| 743 |
dwt_write32bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET, digital_bb_config[prfIndex][config->rxPAC]); |
| 744 |
|
| 745 |
// DTUNE3 (SFD timeout)
|
| 746 |
// Don't allow 0 - SFD timeout will always be enabled
|
| 747 |
if(config->sfdTO == 0) |
| 748 |
{
|
| 749 |
config->sfdTO = DWT_SFDTOC_DEF; |
| 750 |
} |
| 751 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_SFDTOC_OFFSET, config->sfdTO); |
| 752 |
|
| 753 |
// Configure AGC parameters
|
| 754 |
dwt_write32bitoffsetreg( AGC_CFG_STS_ID, 0xC, agc_config.lo32);
|
| 755 |
dwt_write16bitoffsetreg( AGC_CFG_STS_ID, 0x4, agc_config.target[prfIndex]);
|
| 756 |
|
| 757 |
// Set (non-standard) user SFD for improved performance,
|
| 758 |
if(config->nsSFD)
|
| 759 |
{
|
| 760 |
// Write non standard (DW) SFD length
|
| 761 |
dwt_write8bitoffsetreg(USR_SFD_ID, 0x00, dwnsSFDlen[config->dataRate]);
|
| 762 |
nsSfd_result = 3 ;
|
| 763 |
useDWnsSFD = 1 ;
|
| 764 |
} |
| 765 |
regval = (CHAN_CTRL_TX_CHAN_MASK & (chan << CHAN_CTRL_TX_CHAN_SHIFT)) | // Transmit Channel
|
| 766 |
(CHAN_CTRL_RX_CHAN_MASK & (chan << CHAN_CTRL_RX_CHAN_SHIFT)) | // Receive Channel
|
| 767 |
(CHAN_CTRL_RXFPRF_MASK & ((uint32)config->prf << CHAN_CTRL_RXFPRF_SHIFT)) | // RX PRF
|
| 768 |
((CHAN_CTRL_TNSSFD|CHAN_CTRL_RNSSFD) & ((uint32)nsSfd_result << CHAN_CTRL_TNSSFD_SHIFT)) | // nsSFD enable RX&TX
|
| 769 |
(CHAN_CTRL_DWSFD & ((uint32)useDWnsSFD << CHAN_CTRL_DWSFD_SHIFT)) | // Use DW nsSFD
|
| 770 |
(CHAN_CTRL_TX_PCOD_MASK & ((uint32)config->txCode << CHAN_CTRL_TX_PCOD_SHIFT)) | // TX Preamble Code
|
| 771 |
(CHAN_CTRL_RX_PCOD_MASK & ((uint32)config->rxCode << CHAN_CTRL_RX_PCOD_SHIFT)) ; // RX Preamble Code
|
| 772 |
|
| 773 |
dwt_write32bitreg(CHAN_CTRL_ID,regval) ; |
| 774 |
|
| 775 |
// Set up TX Preamble Size, PRF and Data Rate
|
| 776 |
pdw1000local->txFCTRL = ((uint32)(config->txPreambLength | config->prf) << TX_FCTRL_TXPRF_SHFT) | ((uint32)config->dataRate << TX_FCTRL_TXBR_SHFT); |
| 777 |
dwt_write32bitreg(TX_FCTRL_ID, pdw1000local->txFCTRL); |
| 778 |
|
| 779 |
// The SFD transmit pattern is initialised by the DW1000 upon a user TX request, but (due to an IC issue) it is not done for an auto-ACK TX. The
|
| 780 |
// SYS_CTRL write below works around this issue, by simultaneously initiating and aborting a transmission, which correctly initialises the SFD
|
| 781 |
// after its configuration or reconfiguration.
|
| 782 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
| 783 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_TXSTRT | SYS_CTRL_TRXOFF); // Request TX start and TRX off at the same time
|
| 784 |
} // end dwt_configure()
|
| 785 |
|
| 786 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 787 |
* @fn dwt_setrxantennadelay()
|
| 788 |
*
|
| 789 |
* @brief This API function writes the antenna delay (in time units) to RX registers
|
| 790 |
*
|
| 791 |
* input parameters:
|
| 792 |
* @param rxDelay - this is the total (RX) antenna delay value, which
|
| 793 |
* will be programmed into the RX register
|
| 794 |
*
|
| 795 |
* output parameters
|
| 796 |
*
|
| 797 |
* no return value
|
| 798 |
*/
|
| 799 |
void dwt_setrxantennadelay(uint16 rxDelay)
|
| 800 |
{
|
| 801 |
// Set the RX antenna delay for auto TX timestamp adjustment
|
| 802 |
dwt_write16bitoffsetreg(LDE_IF_ID, LDE_RXANTD_OFFSET, rxDelay); |
| 803 |
} |
| 804 |
|
| 805 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 806 |
* @fn dwt_settxantennadelay()
|
| 807 |
*
|
| 808 |
* @brief This API function writes the antenna delay (in time units) to TX registers
|
| 809 |
*
|
| 810 |
* input parameters:
|
| 811 |
* @param txDelay - this is the total (TX) antenna delay value, which
|
| 812 |
* will be programmed into the TX delay register
|
| 813 |
*
|
| 814 |
* output parameters
|
| 815 |
*
|
| 816 |
* no return value
|
| 817 |
*/
|
| 818 |
void dwt_settxantennadelay(uint16 txDelay)
|
| 819 |
{
|
| 820 |
// Set the TX antenna delay for auto TX timestamp adjustment
|
| 821 |
dwt_write16bitoffsetreg(TX_ANTD_ID, TX_ANTD_OFFSET, txDelay); |
| 822 |
} |
| 823 |
|
| 824 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 825 |
* @fn dwt_writetxdata()
|
| 826 |
*
|
| 827 |
* @brief This API function writes the supplied TX data into the DW1000's
|
| 828 |
* TX buffer. The input parameters are the data length in bytes and a pointer
|
| 829 |
* to those data bytes.
|
| 830 |
*
|
| 831 |
* input parameters
|
| 832 |
* @param txFrameLength - This is the total frame length, including the two byte CRC.
|
| 833 |
* Note: this is the length of TX message (including the 2 byte CRC) - max is 1023
|
| 834 |
* standard PHR mode allows up to 127 bytes
|
| 835 |
* if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
| 836 |
* see dwt_configure function
|
| 837 |
* @param txFrameBytes - Pointer to the user?s buffer containing the data to send.
|
| 838 |
* @param txBufferOffset - This specifies an offset in the DW1000?s TX Buffer at which to start writing data.
|
| 839 |
*
|
| 840 |
* output parameters
|
| 841 |
*
|
| 842 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 843 |
*/
|
| 844 |
int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset)
|
| 845 |
{
|
| 846 |
#ifdef DWT_API_ERROR_CHECK
|
| 847 |
assert(txFrameLength >= 2);
|
| 848 |
assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
| 849 |
assert((txBufferOffset + txFrameLength) <= 1024);
|
| 850 |
#endif
|
| 851 |
|
| 852 |
if ((txBufferOffset + txFrameLength) <= 1024) |
| 853 |
{
|
| 854 |
// Write the data to the IC TX buffer, (-2 bytes for auto generated CRC)
|
| 855 |
dwt_writetodevice( TX_BUFFER_ID, txBufferOffset, txFrameLength-2, txFrameBytes);
|
| 856 |
return DWT_SUCCESS;
|
| 857 |
} |
| 858 |
else
|
| 859 |
{
|
| 860 |
return DWT_ERROR;
|
| 861 |
} |
| 862 |
} // end dwt_writetxdata()
|
| 863 |
|
| 864 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 865 |
* @fn dwt_writetxfctrl()
|
| 866 |
*
|
| 867 |
* @brief This API function configures the TX frame control register before the transmission of a frame
|
| 868 |
*
|
| 869 |
* input parameters:
|
| 870 |
* @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023
|
| 871 |
* NOTE: standard PHR mode allows up to 127 bytes
|
| 872 |
* if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
| 873 |
* see dwt_configure function
|
| 874 |
* @param txBufferOffset - the offset in the tx buffer to start writing the data
|
| 875 |
* @param ranging - 1 if this is a ranging frame, else 0
|
| 876 |
*
|
| 877 |
* output parameters
|
| 878 |
*
|
| 879 |
* no return value
|
| 880 |
*/
|
| 881 |
void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) |
| 882 |
{
|
| 883 |
|
| 884 |
#ifdef DWT_API_ERROR_CHECK
|
| 885 |
assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
| 886 |
assert((txBufferOffset + txFrameLength) <= 1024);
|
| 887 |
assert((ranging == 0) || (ranging == 1)) |
| 888 |
#endif
|
| 889 |
|
| 890 |
// Write the frame length to the TX frame control register
|
| 891 |
// pdw1000local->txFCTRL has kept configured bit rate information
|
| 892 |
uint32 reg32 = pdw1000local->txFCTRL | txFrameLength | ((uint32)txBufferOffset << TX_FCTRL_TXBOFFS_SHFT) | ((uint32)ranging << TX_FCTRL_TR_SHFT); |
| 893 |
dwt_write32bitreg(TX_FCTRL_ID, reg32); |
| 894 |
} // end dwt_writetxfctrl()
|
| 895 |
|
| 896 |
|
| 897 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 898 |
* @fn dwt_readrxdata()
|
| 899 |
*
|
| 900 |
* @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter
|
| 901 |
*
|
| 902 |
* input parameters
|
| 903 |
* @param buffer - the buffer into which the data will be read
|
| 904 |
* @param length - the length of data to read (in bytes)
|
| 905 |
* @param rxBufferOffset - the offset in the rx buffer from which to read the data
|
| 906 |
*
|
| 907 |
* output parameters
|
| 908 |
*
|
| 909 |
* no return value
|
| 910 |
*/
|
| 911 |
void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset)
|
| 912 |
{
|
| 913 |
dwt_readfromdevice(RX_BUFFER_ID,rxBufferOffset,length,buffer) ; |
| 914 |
} |
| 915 |
|
| 916 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 917 |
* @fn dwt_readaccdata()
|
| 918 |
*
|
| 919 |
* @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter
|
| 920 |
*
|
| 921 |
* NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet
|
| 922 |
* that should be discarded. This is true no matter what sub-index the read begins at.
|
| 923 |
*
|
| 924 |
* input parameters
|
| 925 |
* @param buffer - the buffer into which the data will be read
|
| 926 |
* @param length - the length of data to read (in bytes)
|
| 927 |
* @param accOffset - the offset in the acc buffer from which to read the data
|
| 928 |
*
|
| 929 |
* output parameters
|
| 930 |
*
|
| 931 |
* no return value
|
| 932 |
*/
|
| 933 |
void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 accOffset)
|
| 934 |
{
|
| 935 |
// Force on the ACC clocks if we are sequenced
|
| 936 |
_dwt_enableclocks(READ_ACC_ON); |
| 937 |
|
| 938 |
dwt_readfromdevice(ACC_MEM_ID,accOffset,len,buffer) ; |
| 939 |
|
| 940 |
_dwt_enableclocks(READ_ACC_OFF); // Revert clocks back
|
| 941 |
} |
| 942 |
|
| 943 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 944 |
* @fn dwt_readcarrierintegrator()
|
| 945 |
*
|
| 946 |
* @brief This is used to read the RX carrier integrator value (relating to the frequency offset of the TX node)
|
| 947 |
*
|
| 948 |
* NOTE: This is a 21-bit signed quantity, the function sign extends the most significant bit, which is bit #20
|
| 949 |
* (numbering from bit zero) to return a 32-bit signed integer value.
|
| 950 |
*
|
| 951 |
* input parameters - NONE
|
| 952 |
*
|
| 953 |
* return value - the (int32) signed carrier integrator value.
|
| 954 |
* A positive value means the local RX clock is running faster than the remote TX device.
|
| 955 |
*/
|
| 956 |
|
| 957 |
#define B20_SIGN_EXTEND_TEST (0x00100000UL) |
| 958 |
#define B20_SIGN_EXTEND_MASK (0xFFF00000UL) |
| 959 |
|
| 960 |
int32 dwt_readcarrierintegrator(void)
|
| 961 |
{
|
| 962 |
uint32 regval = 0 ;
|
| 963 |
int j ;
|
| 964 |
uint8 buffer[DRX_CARRIER_INT_LEN] ; |
| 965 |
|
| 966 |
/* Read 3 bytes into buffer (21-bit quantity) */
|
| 967 |
|
| 968 |
dwt_readfromdevice(DRX_CONF_ID,DRX_CARRIER_INT_OFFSET,DRX_CARRIER_INT_LEN, buffer) ; |
| 969 |
|
| 970 |
for (j = 2 ; j >= 0 ; j --) // arrange the three bytes into an unsigned integer value |
| 971 |
{
|
| 972 |
regval = (regval << 8) + buffer[j] ;
|
| 973 |
} |
| 974 |
|
| 975 |
if (regval & B20_SIGN_EXTEND_TEST) regval |= B20_SIGN_EXTEND_MASK ; // sign extend bit #20 to whole word |
| 976 |
else regval &= DRX_CARRIER_INT_MASK ; // make sure upper bits are clear if not sign extending |
| 977 |
|
| 978 |
return (int32) regval ; // cast unsigned value to signed quantity. |
| 979 |
} |
| 980 |
|
| 981 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 982 |
* @fn dwt_readdiagnostics()
|
| 983 |
*
|
| 984 |
* @brief this function reads the RX signal quality diagnostic data
|
| 985 |
*
|
| 986 |
* input parameters
|
| 987 |
* @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000
|
| 988 |
*
|
| 989 |
* output parameters
|
| 990 |
*
|
| 991 |
* no return value
|
| 992 |
*/
|
| 993 |
void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics)
|
| 994 |
{
|
| 995 |
// Read the HW FP index
|
| 996 |
diagnostics->firstPath = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_INDEX_OFFSET); |
| 997 |
|
| 998 |
// LDE diagnostic data
|
| 999 |
diagnostics->maxNoise = dwt_read16bitoffsetreg(LDE_IF_ID, LDE_THRESH_OFFSET); |
| 1000 |
|
| 1001 |
// Read all 8 bytes in one SPI transaction
|
| 1002 |
dwt_readfromdevice(RX_FQUAL_ID, 0x0, 8, (uint8*)&diagnostics->stdNoise); |
| 1003 |
|
| 1004 |
diagnostics->firstPathAmp1 = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_AMPL1_OFFSET); |
| 1005 |
|
| 1006 |
diagnostics->rxPreamCount = (dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXPACC_MASK) >> RX_FINFO_RXPACC_SHIFT ; |
| 1007 |
} |
| 1008 |
|
| 1009 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1010 |
* @fn dwt_readtxtimestamp()
|
| 1011 |
*
|
| 1012 |
* @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay)
|
| 1013 |
*
|
| 1014 |
* input parameters
|
| 1015 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time
|
| 1016 |
*
|
| 1017 |
* output parameters - the timestamp buffer will contain the value after the function call
|
| 1018 |
*
|
| 1019 |
* no return value
|
| 1020 |
*/
|
| 1021 |
void dwt_readtxtimestamp(uint8 * timestamp)
|
| 1022 |
{
|
| 1023 |
dwt_readfromdevice(TX_TIME_ID, TX_TIME_TX_STAMP_OFFSET, TX_TIME_TX_STAMP_LEN, timestamp) ; // Read bytes directly into buffer
|
| 1024 |
} |
| 1025 |
|
| 1026 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1027 |
* @fn dwt_readtxtimestamphi32()
|
| 1028 |
*
|
| 1029 |
* @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
| 1030 |
*
|
| 1031 |
* input parameters
|
| 1032 |
*
|
| 1033 |
* output parameters
|
| 1034 |
*
|
| 1035 |
* returns high 32-bits of TX timestamp
|
| 1036 |
*/
|
| 1037 |
uint32 dwt_readtxtimestamphi32(void)
|
| 1038 |
{
|
| 1039 |
return dwt_read32bitoffsetreg(TX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
| 1040 |
} |
| 1041 |
|
| 1042 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1043 |
* @fn dwt_readtxtimestamplo32()
|
| 1044 |
*
|
| 1045 |
* @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
| 1046 |
*
|
| 1047 |
* input parameters
|
| 1048 |
*
|
| 1049 |
* output parameters
|
| 1050 |
*
|
| 1051 |
* returns low 32-bits of TX timestamp
|
| 1052 |
*/
|
| 1053 |
uint32 dwt_readtxtimestamplo32(void)
|
| 1054 |
{
|
| 1055 |
return dwt_read32bitreg(TX_TIME_ID); // Read TX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
| 1056 |
} |
| 1057 |
|
| 1058 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1059 |
* @fn dwt_readrxtimestamp()
|
| 1060 |
*
|
| 1061 |
* @brief This is used to read the RX timestamp (adjusted time of arrival)
|
| 1062 |
*
|
| 1063 |
* input parameters
|
| 1064 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time
|
| 1065 |
*
|
| 1066 |
* output parameters - the timestamp buffer will contain the value after the function call
|
| 1067 |
*
|
| 1068 |
* no return value
|
| 1069 |
*/
|
| 1070 |
void dwt_readrxtimestamp(uint8 * timestamp)
|
| 1071 |
{
|
| 1072 |
dwt_readfromdevice(RX_TIME_ID, RX_TIME_RX_STAMP_OFFSET, RX_TIME_RX_STAMP_LEN, timestamp) ; // Get the adjusted time of arrival
|
| 1073 |
} |
| 1074 |
|
| 1075 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1076 |
* @fn dwt_readrxtimestamphi32()
|
| 1077 |
*
|
| 1078 |
* @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
| 1079 |
*
|
| 1080 |
* input parameters
|
| 1081 |
*
|
| 1082 |
* output parameters
|
| 1083 |
*
|
| 1084 |
* returns high 32-bits of RX timestamp
|
| 1085 |
*/
|
| 1086 |
uint32 dwt_readrxtimestamphi32(void)
|
| 1087 |
{
|
| 1088 |
return dwt_read32bitoffsetreg(RX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
| 1089 |
} |
| 1090 |
|
| 1091 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1092 |
* @fn dwt_readrxtimestamplo32()
|
| 1093 |
*
|
| 1094 |
* @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
| 1095 |
*
|
| 1096 |
* input parameters
|
| 1097 |
*
|
| 1098 |
* output parameters
|
| 1099 |
*
|
| 1100 |
* returns low 32-bits of RX timestamp
|
| 1101 |
*/
|
| 1102 |
uint32 dwt_readrxtimestamplo32(void)
|
| 1103 |
{
|
| 1104 |
return dwt_read32bitreg(RX_TIME_ID); // Read RX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
| 1105 |
} |
| 1106 |
|
| 1107 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1108 |
* @fn dwt_readsystimestamphi32()
|
| 1109 |
*
|
| 1110 |
* @brief This is used to read the high 32-bits of the system time
|
| 1111 |
*
|
| 1112 |
* input parameters
|
| 1113 |
*
|
| 1114 |
* output parameters
|
| 1115 |
*
|
| 1116 |
* returns high 32-bits of system time timestamp
|
| 1117 |
*/
|
| 1118 |
uint32 dwt_readsystimestamphi32(void)
|
| 1119 |
{
|
| 1120 |
return dwt_read32bitoffsetreg(SYS_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
| 1121 |
} |
| 1122 |
|
| 1123 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1124 |
* @fn dwt_readsystime()
|
| 1125 |
*
|
| 1126 |
* @brief This is used to read the system time
|
| 1127 |
*
|
| 1128 |
* input parameters
|
| 1129 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read system time
|
| 1130 |
*
|
| 1131 |
* output parameters
|
| 1132 |
* @param timestamp - the timestamp buffer will contain the value after the function call
|
| 1133 |
*
|
| 1134 |
* no return value
|
| 1135 |
*/
|
| 1136 |
void dwt_readsystime(uint8 * timestamp)
|
| 1137 |
{
|
| 1138 |
dwt_readfromdevice(SYS_TIME_ID, SYS_TIME_OFFSET, SYS_TIME_LEN, timestamp) ; |
| 1139 |
} |
| 1140 |
|
| 1141 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1142 |
* @fn dwt_writetodevice()
|
| 1143 |
*
|
| 1144 |
* @brief this function is used to write to the DW1000 device registers
|
| 1145 |
* Notes:
|
| 1146 |
* 1. Firstly we create a header (the first byte is a header byte)
|
| 1147 |
* a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
| 1148 |
* b. set bit-7 (or with 0x80) for write operation
|
| 1149 |
* c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
| 1150 |
*
|
| 1151 |
* 2. Write the header followed by the data bytes to the DW1000 device
|
| 1152 |
*
|
| 1153 |
*
|
| 1154 |
* input parameters:
|
| 1155 |
* @param recordNumber - ID of register file or buffer being accessed
|
| 1156 |
* @param index - byte index into register file or buffer being accessed
|
| 1157 |
* @param length - number of bytes being written
|
| 1158 |
* @param buffer - pointer to buffer containing the 'length' bytes to be written
|
| 1159 |
*
|
| 1160 |
* output parameters
|
| 1161 |
*
|
| 1162 |
* no return value
|
| 1163 |
*/
|
| 1164 |
void dwt_writetodevice
|
| 1165 |
( |
| 1166 |
uint16 recordNumber, |
| 1167 |
uint16 index, |
| 1168 |
uint32 length, |
| 1169 |
const uint8 *buffer
|
| 1170 |
) |
| 1171 |
{
|
| 1172 |
uint8 header[3] ; // Buffer to compose header in |
| 1173 |
int cnt = 0; // Counter for length of header |
| 1174 |
#ifdef DWT_API_ERROR_CHECK
|
| 1175 |
assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
| 1176 |
#endif
|
| 1177 |
|
| 1178 |
// Write message header selecting WRITE operation and addresses as appropriate (this is one to three bytes long)
|
| 1179 |
if (index == 0) // For index of 0, no sub-index is required |
| 1180 |
{
|
| 1181 |
header[cnt++] = 0x80 | recordNumber ; // Bit-7 is WRITE operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id |
| 1182 |
} |
| 1183 |
else
|
| 1184 |
{
|
| 1185 |
#ifdef DWT_API_ERROR_CHECK
|
| 1186 |
assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
| 1187 |
#endif
|
| 1188 |
header[cnt++] = 0xC0 | recordNumber ; // Bit-7 is WRITE operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
| 1189 |
|
| 1190 |
if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
| 1191 |
{
|
| 1192 |
header[cnt++] = (uint8)index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
| 1193 |
} |
| 1194 |
else
|
| 1195 |
{
|
| 1196 |
header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
| 1197 |
header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
| 1198 |
} |
| 1199 |
} |
| 1200 |
|
| 1201 |
// Write it to the SPI
|
| 1202 |
writetospi(cnt,header,length,buffer); |
| 1203 |
} // end dwt_writetodevice()
|
| 1204 |
|
| 1205 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1206 |
* @fn dwt_readfromdevice()
|
| 1207 |
*
|
| 1208 |
* @brief this function is used to read from the DW1000 device registers
|
| 1209 |
* Notes:
|
| 1210 |
* 1. Firstly we create a header (the first byte is a header byte)
|
| 1211 |
* a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
| 1212 |
* b. set bit-7 (or with 0x80) for write operation
|
| 1213 |
* c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
| 1214 |
*
|
| 1215 |
* 2. Write the header followed by the data bytes to the DW1000 device
|
| 1216 |
* 3. Store the read data in the input buffer
|
| 1217 |
*
|
| 1218 |
* input parameters:
|
| 1219 |
* @param recordNumber - ID of register file or buffer being accessed
|
| 1220 |
* @param index - byte index into register file or buffer being accessed
|
| 1221 |
* @param length - number of bytes being read
|
| 1222 |
* @param buffer - pointer to buffer in which to return the read data.
|
| 1223 |
*
|
| 1224 |
* output parameters
|
| 1225 |
*
|
| 1226 |
* no return value
|
| 1227 |
*/
|
| 1228 |
void dwt_readfromdevice
|
| 1229 |
( |
| 1230 |
uint16 recordNumber, |
| 1231 |
uint16 index, |
| 1232 |
uint32 length, |
| 1233 |
uint8 *buffer |
| 1234 |
) |
| 1235 |
{
|
| 1236 |
uint8 header[3] ; // Buffer to compose header in |
| 1237 |
int cnt = 0; // Counter for length of header |
| 1238 |
#ifdef DWT_API_ERROR_CHECK
|
| 1239 |
assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
| 1240 |
#endif
|
| 1241 |
|
| 1242 |
// Write message header selecting READ operation and addresses as appropriate (this is one to three bytes long)
|
| 1243 |
if (index == 0) // For index of 0, no sub-index is required |
| 1244 |
{
|
| 1245 |
header[cnt++] = (uint8) recordNumber ; // Bit-7 zero is READ operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id
|
| 1246 |
} |
| 1247 |
else
|
| 1248 |
{
|
| 1249 |
#ifdef DWT_API_ERROR_CHECK
|
| 1250 |
assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
| 1251 |
#endif
|
| 1252 |
header[cnt++] = (uint8)(0x40 | recordNumber) ; // Bit-7 zero is READ operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
| 1253 |
|
| 1254 |
if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
| 1255 |
{
|
| 1256 |
header[cnt++] = (uint8) index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
| 1257 |
} |
| 1258 |
else
|
| 1259 |
{
|
| 1260 |
header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
| 1261 |
header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
| 1262 |
} |
| 1263 |
} |
| 1264 |
|
| 1265 |
// Do the read from the SPI
|
| 1266 |
readfromspi(cnt, header, length, buffer); // result is stored in the buffer
|
| 1267 |
} // end dwt_readfromdevice()
|
| 1268 |
|
| 1269 |
|
| 1270 |
|
| 1271 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1272 |
* @fn dwt_read32bitoffsetreg()
|
| 1273 |
*
|
| 1274 |
* @brief this function is used to read 32-bit value from the DW1000 device registers
|
| 1275 |
*
|
| 1276 |
* input parameters:
|
| 1277 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1278 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1279 |
*
|
| 1280 |
* output parameters
|
| 1281 |
*
|
| 1282 |
* returns 32 bit register value
|
| 1283 |
*/
|
| 1284 |
uint32 dwt_read32bitoffsetreg(int regFileID, int regOffset) |
| 1285 |
{
|
| 1286 |
uint32 regval = 0 ;
|
| 1287 |
int j ;
|
| 1288 |
uint8 buffer[4] ;
|
| 1289 |
|
| 1290 |
dwt_readfromdevice(regFileID,regOffset,4,buffer); // Read 4 bytes (32-bits) register into buffer |
| 1291 |
|
| 1292 |
for (j = 3 ; j >= 0 ; j --) |
| 1293 |
{
|
| 1294 |
regval = (regval << 8) + buffer[j] ;
|
| 1295 |
} |
| 1296 |
return regval ;
|
| 1297 |
|
| 1298 |
} // end dwt_read32bitoffsetreg()
|
| 1299 |
|
| 1300 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1301 |
* @fn dwt_read16bitoffsetreg()
|
| 1302 |
*
|
| 1303 |
* @brief this function is used to read 16-bit value from the DW1000 device registers
|
| 1304 |
*
|
| 1305 |
* input parameters:
|
| 1306 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1307 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1308 |
*
|
| 1309 |
* output parameters
|
| 1310 |
*
|
| 1311 |
* returns 16 bit register value
|
| 1312 |
*/
|
| 1313 |
uint16 dwt_read16bitoffsetreg(int regFileID, int regOffset) |
| 1314 |
{
|
| 1315 |
uint16 regval = 0 ;
|
| 1316 |
uint8 buffer[2] ;
|
| 1317 |
|
| 1318 |
dwt_readfromdevice(regFileID,regOffset,2,buffer); // Read 2 bytes (16-bits) register into buffer |
| 1319 |
|
| 1320 |
regval = ((uint16)buffer[1] << 8) + buffer[0] ; |
| 1321 |
return regval ;
|
| 1322 |
|
| 1323 |
} // end dwt_read16bitoffsetreg()
|
| 1324 |
|
| 1325 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1326 |
* @fn dwt_read8bitoffsetreg()
|
| 1327 |
*
|
| 1328 |
* @brief this function is used to read an 8-bit value from the DW1000 device registers
|
| 1329 |
*
|
| 1330 |
* input parameters:
|
| 1331 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1332 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1333 |
*
|
| 1334 |
* output parameters
|
| 1335 |
*
|
| 1336 |
* returns 8-bit register value
|
| 1337 |
*/
|
| 1338 |
uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) |
| 1339 |
{
|
| 1340 |
uint8 regval; |
| 1341 |
|
| 1342 |
dwt_readfromdevice(regFileID, regOffset, 1, ®val);
|
| 1343 |
|
| 1344 |
return regval ;
|
| 1345 |
} |
| 1346 |
|
| 1347 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1348 |
* @fn dwt_write8bitoffsetreg()
|
| 1349 |
*
|
| 1350 |
* @brief this function is used to write an 8-bit value to the DW1000 device registers
|
| 1351 |
*
|
| 1352 |
* input parameters:
|
| 1353 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1354 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1355 |
* @param regval - the value to write
|
| 1356 |
*
|
| 1357 |
* output parameters
|
| 1358 |
*
|
| 1359 |
* no return value
|
| 1360 |
*/
|
| 1361 |
void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval) |
| 1362 |
{
|
| 1363 |
dwt_writetodevice(regFileID, regOffset, 1, ®val);
|
| 1364 |
} |
| 1365 |
|
| 1366 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1367 |
* @fn dwt_write16bitoffsetreg()
|
| 1368 |
*
|
| 1369 |
* @brief this function is used to write 16-bit value to the DW1000 device registers
|
| 1370 |
*
|
| 1371 |
* input parameters:
|
| 1372 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1373 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1374 |
* @param regval - the value to write
|
| 1375 |
*
|
| 1376 |
* output parameters
|
| 1377 |
*
|
| 1378 |
* no return value
|
| 1379 |
*/
|
| 1380 |
void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16 regval) |
| 1381 |
{
|
| 1382 |
uint8 buffer[2] ;
|
| 1383 |
|
| 1384 |
buffer[0] = regval & 0xFF; |
| 1385 |
buffer[1] = regval >> 8 ; |
| 1386 |
|
| 1387 |
dwt_writetodevice(regFileID,regOffset,2,buffer);
|
| 1388 |
} // end dwt_write16bitoffsetreg()
|
| 1389 |
|
| 1390 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1391 |
* @fn dwt_write32bitoffsetreg()
|
| 1392 |
*
|
| 1393 |
* @brief this function is used to write 32-bit value to the DW1000 device registers
|
| 1394 |
*
|
| 1395 |
* input parameters:
|
| 1396 |
* @param regFileID - ID of register file or buffer being accessed
|
| 1397 |
* @param regOffset - the index into register file or buffer being accessed
|
| 1398 |
* @param regval - the value to write
|
| 1399 |
*
|
| 1400 |
* output parameters
|
| 1401 |
*
|
| 1402 |
* no return value
|
| 1403 |
*/
|
| 1404 |
void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32 regval) |
| 1405 |
{
|
| 1406 |
int j ;
|
| 1407 |
uint8 buffer[4] ;
|
| 1408 |
|
| 1409 |
for ( j = 0 ; j < 4 ; j++ ) |
| 1410 |
{
|
| 1411 |
buffer[j] = regval & 0xff ;
|
| 1412 |
regval >>= 8 ;
|
| 1413 |
} |
| 1414 |
|
| 1415 |
dwt_writetodevice(regFileID,regOffset,4,buffer);
|
| 1416 |
} // end dwt_write32bitoffsetreg()
|
| 1417 |
|
| 1418 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1419 |
* @fn dwt_enableframefilter()
|
| 1420 |
*
|
| 1421 |
* @brief This is used to enable the frame filtering - (the default option is to
|
| 1422 |
* accept any data and ACK frames with correct destination address
|
| 1423 |
*
|
| 1424 |
* input parameters
|
| 1425 |
* @param - bitmask - enables/disables the frame filtering options according to
|
| 1426 |
* DWT_FF_NOTYPE_EN 0x000 no frame types allowed
|
| 1427 |
* DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match))
|
| 1428 |
* DWT_FF_BEACON_EN 0x004 beacon frames allowed
|
| 1429 |
* DWT_FF_DATA_EN 0x008 data frames allowed
|
| 1430 |
* DWT_FF_ACK_EN 0x010 ack frames allowed
|
| 1431 |
* DWT_FF_MAC_EN 0x020 mac control frames allowed
|
| 1432 |
* DWT_FF_RSVD_EN 0x040 reserved frame types allowed
|
| 1433 |
*
|
| 1434 |
* output parameters
|
| 1435 |
*
|
| 1436 |
* no return value
|
| 1437 |
*/
|
| 1438 |
void dwt_enableframefilter(uint16 enable)
|
| 1439 |
{
|
| 1440 |
uint32 sysconfig = SYS_CFG_MASK & dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
| 1441 |
|
| 1442 |
if(enable)
|
| 1443 |
{
|
| 1444 |
// Enable frame filtering and configure frame types
|
| 1445 |
sysconfig &= ~(SYS_CFG_FF_ALL_EN); // Clear all
|
| 1446 |
sysconfig |= (enable & SYS_CFG_FF_ALL_EN) | SYS_CFG_FFE; |
| 1447 |
} |
| 1448 |
else
|
| 1449 |
{
|
| 1450 |
sysconfig &= ~(SYS_CFG_FFE); |
| 1451 |
} |
| 1452 |
|
| 1453 |
pdw1000local->sysCFGreg = sysconfig ; |
| 1454 |
dwt_write32bitreg(SYS_CFG_ID,sysconfig) ; |
| 1455 |
} |
| 1456 |
|
| 1457 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1458 |
* @fn dwt_setpanid()
|
| 1459 |
*
|
| 1460 |
* @brief This is used to set the PAN ID
|
| 1461 |
*
|
| 1462 |
* input parameters
|
| 1463 |
* @param panID - this is the PAN ID
|
| 1464 |
*
|
| 1465 |
* output parameters
|
| 1466 |
*
|
| 1467 |
* no return value
|
| 1468 |
*/
|
| 1469 |
void dwt_setpanid(uint16 panID)
|
| 1470 |
{
|
| 1471 |
// PAN ID is high 16 bits of register
|
| 1472 |
dwt_write16bitoffsetreg(PANADR_ID, PANADR_PAN_ID_OFFSET, panID); |
| 1473 |
} |
| 1474 |
|
| 1475 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1476 |
* @fn dwt_setaddress16()
|
| 1477 |
*
|
| 1478 |
* @brief This is used to set 16-bit (short) address
|
| 1479 |
*
|
| 1480 |
* input parameters
|
| 1481 |
* @param shortAddress - this sets the 16 bit short address
|
| 1482 |
*
|
| 1483 |
* output parameters
|
| 1484 |
*
|
| 1485 |
* no return value
|
| 1486 |
*/
|
| 1487 |
void dwt_setaddress16(uint16 shortAddress)
|
| 1488 |
{
|
| 1489 |
// Short address into low 16 bits
|
| 1490 |
dwt_write16bitoffsetreg(PANADR_ID, PANADR_SHORT_ADDR_OFFSET, shortAddress); |
| 1491 |
} |
| 1492 |
|
| 1493 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1494 |
* @fn dwt_seteui()
|
| 1495 |
*
|
| 1496 |
* @brief This is used to set the EUI 64-bit (long) address
|
| 1497 |
*
|
| 1498 |
* input parameters
|
| 1499 |
* @param eui64 - this is the pointer to a buffer that contains the 64bit address
|
| 1500 |
*
|
| 1501 |
* output parameters
|
| 1502 |
*
|
| 1503 |
* no return value
|
| 1504 |
*/
|
| 1505 |
void dwt_seteui(uint8 *eui64)
|
| 1506 |
{
|
| 1507 |
dwt_writetodevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
| 1508 |
} |
| 1509 |
|
| 1510 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1511 |
* @fn dwt_geteui()
|
| 1512 |
*
|
| 1513 |
* @brief This is used to get the EUI 64-bit from the DW1000
|
| 1514 |
*
|
| 1515 |
* input parameters
|
| 1516 |
* @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value
|
| 1517 |
*
|
| 1518 |
* output parameters
|
| 1519 |
*
|
| 1520 |
* no return value
|
| 1521 |
*/
|
| 1522 |
void dwt_geteui(uint8 *eui64)
|
| 1523 |
{
|
| 1524 |
dwt_readfromdevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
| 1525 |
} |
| 1526 |
|
| 1527 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1528 |
* @fn dwt_otpread()
|
| 1529 |
*
|
| 1530 |
* @brief This is used to read the OTP data from given address into provided array
|
| 1531 |
*
|
| 1532 |
* input parameters
|
| 1533 |
* @param address - this is the OTP address to read from
|
| 1534 |
* @param array - this is the pointer to the array into which to read the data
|
| 1535 |
* @param length - this is the number of 32 bit words to read (array needs to be at least this length)
|
| 1536 |
*
|
| 1537 |
* output parameters
|
| 1538 |
*
|
| 1539 |
* no return value
|
| 1540 |
*/
|
| 1541 |
void dwt_otpread(uint16 address, uint32 *array, uint8 length)
|
| 1542 |
{
|
| 1543 |
int i;
|
| 1544 |
|
| 1545 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: Set system clock to XTAL - this is necessary to make sure the values read by _dwt_otpread are reliable
|
| 1546 |
|
| 1547 |
for(i=0; i<length; i++) |
| 1548 |
{
|
| 1549 |
array[i] = _dwt_otpread(address + i) ; |
| 1550 |
} |
| 1551 |
|
| 1552 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Restore system clock to PLL
|
| 1553 |
|
| 1554 |
return ;
|
| 1555 |
} |
| 1556 |
|
| 1557 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1558 |
* @fn _dwt_otpread()
|
| 1559 |
*
|
| 1560 |
* @brief function to read the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
| 1561 |
*
|
| 1562 |
* input parameters
|
| 1563 |
* @param address - address to read at
|
| 1564 |
*
|
| 1565 |
* output parameters
|
| 1566 |
*
|
| 1567 |
* returns the 32bit of read data
|
| 1568 |
*/
|
| 1569 |
uint32 _dwt_otpread(uint16 address) |
| 1570 |
{
|
| 1571 |
uint32 ret_data; |
| 1572 |
|
| 1573 |
// Write the address
|
| 1574 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_ADDR, address); |
| 1575 |
|
| 1576 |
// Perform OTP Read - Manual read mode has to be set
|
| 1577 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_OTPREAD | OTP_CTRL_OTPRDEN); |
| 1578 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, 0x00); // OTPREAD is self clearing but OTPRDEN is not |
| 1579 |
|
| 1580 |
// Read read data, available 40ns after rising edge of OTP_READ
|
| 1581 |
ret_data = dwt_read32bitoffsetreg(OTP_IF_ID, OTP_RDAT); |
| 1582 |
|
| 1583 |
// Return the 32bit of read data
|
| 1584 |
return ret_data;
|
| 1585 |
} |
| 1586 |
|
| 1587 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1588 |
* @fn _dwt_otpsetmrregs()
|
| 1589 |
*
|
| 1590 |
* @brief Configure the MR registers for initial programming (enable charge pump).
|
| 1591 |
* Read margin is used to stress the read back from the
|
| 1592 |
* programmed bit. In normal operation this is relaxed.
|
| 1593 |
*
|
| 1594 |
* input parameters
|
| 1595 |
* @param mode - "0" : Reset all to 0x0: MRA=0x0000, MRB=0x0000, MR=0x0000
|
| 1596 |
* "1" : Set for inital programming: MRA=0x9220, MRB=0x000E, MR=0x1024
|
| 1597 |
* "2" : Set for soak programming: MRA=0x9220, MRB=0x0003, MR=0x1824
|
| 1598 |
* "3" : High Vpp: MRA=0x9220, MRB=0x004E, MR=0x1824
|
| 1599 |
* "4" : Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
| 1600 |
* "5" : Array Clean: MRA=0x0049, MRB=0x0003, MR=0x0024
|
| 1601 |
* "4" : Very Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
| 1602 |
*
|
| 1603 |
* output parameters
|
| 1604 |
*
|
| 1605 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 1606 |
*/
|
| 1607 |
uint32 _dwt_otpsetmrregs(int mode)
|
| 1608 |
{
|
| 1609 |
uint8 wr_buf[4];
|
| 1610 |
uint32 mra=0,mrb=0,mr=0; |
| 1611 |
|
| 1612 |
// PROGRAMME MRA
|
| 1613 |
// Set MRA, MODE_SEL
|
| 1614 |
wr_buf[0] = 0x03; |
| 1615 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL+1,1,wr_buf); |
| 1616 |
|
| 1617 |
// Load data
|
| 1618 |
switch(mode&0x0f) { |
| 1619 |
case 0x0 : |
| 1620 |
mr =0x0000;
|
| 1621 |
mra=0x0000;
|
| 1622 |
mrb=0x0000;
|
| 1623 |
break;
|
| 1624 |
case 0x1 : |
| 1625 |
mr =0x1024;
|
| 1626 |
mra=0x9220; // Enable CPP mon |
| 1627 |
mrb=0x000e;
|
| 1628 |
break;
|
| 1629 |
case 0x2 : |
| 1630 |
mr =0x1824;
|
| 1631 |
mra=0x9220;
|
| 1632 |
mrb=0x0003;
|
| 1633 |
break;
|
| 1634 |
case 0x3 : |
| 1635 |
mr =0x1824;
|
| 1636 |
mra=0x9220;
|
| 1637 |
mrb=0x004e;
|
| 1638 |
break;
|
| 1639 |
case 0x4 : |
| 1640 |
mr =0x0000;
|
| 1641 |
mra=0x0000;
|
| 1642 |
mrb=0x0003;
|
| 1643 |
break;
|
| 1644 |
case 0x5 : |
| 1645 |
mr =0x0024;
|
| 1646 |
mra=0x0000;
|
| 1647 |
mrb=0x0003;
|
| 1648 |
break;
|
| 1649 |
default :
|
| 1650 |
return DWT_ERROR;
|
| 1651 |
} |
| 1652 |
|
| 1653 |
wr_buf[0] = mra & 0x00ff; |
| 1654 |
wr_buf[1] = (mra & 0xff00)>>8; |
| 1655 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
| 1656 |
|
| 1657 |
|
| 1658 |
// Set WRITE_MR
|
| 1659 |
wr_buf[0] = 0x08; |
| 1660 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1661 |
|
| 1662 |
// Wait?
|
| 1663 |
deca_sleep(2);
|
| 1664 |
|
| 1665 |
// Set Clear Mode sel
|
| 1666 |
wr_buf[0] = 0x02; |
| 1667 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
| 1668 |
|
| 1669 |
// Set AUX update, write MR
|
| 1670 |
wr_buf[0] = 0x88; |
| 1671 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1672 |
// Clear write MR
|
| 1673 |
wr_buf[0] = 0x80; |
| 1674 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1675 |
// Clear AUX update
|
| 1676 |
wr_buf[0] = 0x00; |
| 1677 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1678 |
|
| 1679 |
///////////////////////////////////////////
|
| 1680 |
// PROGRAM MRB
|
| 1681 |
// Set SLOW, MRB, MODE_SEL
|
| 1682 |
wr_buf[0] = 0x05; |
| 1683 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
| 1684 |
|
| 1685 |
wr_buf[0] = mrb & 0x00ff; |
| 1686 |
wr_buf[1] = (mrb & 0xff00)>>8; |
| 1687 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
| 1688 |
|
| 1689 |
// Set WRITE_MR
|
| 1690 |
wr_buf[0] = 0x08; |
| 1691 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1692 |
|
| 1693 |
// Wait?
|
| 1694 |
deca_sleep(2);
|
| 1695 |
|
| 1696 |
// Set Clear Mode sel
|
| 1697 |
wr_buf[0] = 0x04; |
| 1698 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
| 1699 |
|
| 1700 |
// Set AUX update, write MR
|
| 1701 |
wr_buf[0] = 0x88; |
| 1702 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1703 |
// Clear write MR
|
| 1704 |
wr_buf[0] = 0x80; |
| 1705 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1706 |
// Clear AUX update
|
| 1707 |
wr_buf[0] = 0x00; |
| 1708 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1709 |
|
| 1710 |
///////////////////////////////////////////
|
| 1711 |
// PROGRAM MR
|
| 1712 |
// Set SLOW, MODE_SEL
|
| 1713 |
wr_buf[0] = 0x01; |
| 1714 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
| 1715 |
// Load data
|
| 1716 |
|
| 1717 |
wr_buf[0] = mr & 0x00ff; |
| 1718 |
wr_buf[1] = (mr & 0xff00)>>8; |
| 1719 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
| 1720 |
|
| 1721 |
// Set WRITE_MR
|
| 1722 |
wr_buf[0] = 0x08; |
| 1723 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
| 1724 |
|
| 1725 |
// Wait?
|
| 1726 |
deca_sleep(2);
|
| 1727 |
// Set Clear Mode sel
|
| 1728 |
wr_buf[0] = 0x00; |
| 1729 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
| 1730 |
|
| 1731 |
return DWT_SUCCESS;
|
| 1732 |
} |
| 1733 |
|
| 1734 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1735 |
* @fn _dwt_otpprogword32()
|
| 1736 |
*
|
| 1737 |
* @brief function to program the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
| 1738 |
* VNM Charge pump needs to be enabled (see _dwt_otpsetmrregs)
|
| 1739 |
* Note the address is only 11 bits long.
|
| 1740 |
*
|
| 1741 |
* input parameters
|
| 1742 |
* @param address - address to read at
|
| 1743 |
*
|
| 1744 |
* output parameters
|
| 1745 |
*
|
| 1746 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 1747 |
*/
|
| 1748 |
uint32 _dwt_otpprogword32(uint32 data, uint16 address) |
| 1749 |
{
|
| 1750 |
uint8 rd_buf[1];
|
| 1751 |
uint8 wr_buf[4];
|
| 1752 |
uint8 otp_done; |
| 1753 |
|
| 1754 |
// Write the data
|
| 1755 |
wr_buf[3] = (data>>24) & 0xff; |
| 1756 |
wr_buf[2] = (data>>16) & 0xff; |
| 1757 |
wr_buf[1] = (data>>8) & 0xff; |
| 1758 |
wr_buf[0] = data & 0xff; |
| 1759 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT, 4, wr_buf);
|
| 1760 |
|
| 1761 |
// Write the address [10:0]
|
| 1762 |
wr_buf[1] = (address>>8) & 0x07; |
| 1763 |
wr_buf[0] = address & 0xff; |
| 1764 |
dwt_writetodevice(OTP_IF_ID, OTP_ADDR, 2, wr_buf);
|
| 1765 |
|
| 1766 |
// Enable Sequenced programming
|
| 1767 |
wr_buf[0] = OTP_CTRL_OTPPROG;
|
| 1768 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
| 1769 |
wr_buf[0] = 0x00; // And clear |
| 1770 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
| 1771 |
|
| 1772 |
// WAIT for status to flag PRGM OK..
|
| 1773 |
otp_done = 0;
|
| 1774 |
while(otp_done == 0) |
| 1775 |
{
|
| 1776 |
deca_sleep(1);
|
| 1777 |
dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf);
|
| 1778 |
|
| 1779 |
if((rd_buf[0] & 0x01) == 0x01) |
| 1780 |
{
|
| 1781 |
otp_done = 1;
|
| 1782 |
} |
| 1783 |
} |
| 1784 |
|
| 1785 |
return DWT_SUCCESS;
|
| 1786 |
} |
| 1787 |
|
| 1788 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1789 |
* @fn dwt_otpwriteandverify()
|
| 1790 |
*
|
| 1791 |
* @brief This is used to program 32-bit value into the DW1000 OTP memory.
|
| 1792 |
*
|
| 1793 |
* input parameters
|
| 1794 |
* @param value - this is the 32-bit value to be programmed into OTP
|
| 1795 |
* @param address - this is the 16-bit OTP address into which the 32-bit value is programmed
|
| 1796 |
*
|
| 1797 |
* output parameters
|
| 1798 |
*
|
| 1799 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 1800 |
*/
|
| 1801 |
int dwt_otpwriteandverify(uint32 value, uint16 address)
|
| 1802 |
{
|
| 1803 |
int prog_ok = DWT_SUCCESS;
|
| 1804 |
int retry = 0; |
| 1805 |
// Firstly set the system clock to crystal
|
| 1806 |
_dwt_enableclocks(FORCE_SYS_XTI); //set system clock to XTI
|
| 1807 |
|
| 1808 |
//
|
| 1809 |
//!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!
|
| 1810 |
//Set the supply to 3.7V
|
| 1811 |
//
|
| 1812 |
|
| 1813 |
_dwt_otpsetmrregs(1); // Set mode for programming |
| 1814 |
|
| 1815 |
// For each value to program - the readback/check is done couple of times to verify it has programmed successfully
|
| 1816 |
while(1) |
| 1817 |
{
|
| 1818 |
_dwt_otpprogword32(value, address); |
| 1819 |
|
| 1820 |
if(_dwt_otpread(address) == value)
|
| 1821 |
{
|
| 1822 |
break;
|
| 1823 |
} |
| 1824 |
retry++; |
| 1825 |
if(retry==10) |
| 1826 |
{
|
| 1827 |
break;
|
| 1828 |
} |
| 1829 |
} |
| 1830 |
|
| 1831 |
// Even if the above does not exit before retry reaches 10, the programming has probably been successful
|
| 1832 |
|
| 1833 |
_dwt_otpsetmrregs(4); // Set mode for reading |
| 1834 |
|
| 1835 |
if(_dwt_otpread(address) != value) // If this does not pass please check voltage supply on VDDIO |
| 1836 |
{
|
| 1837 |
prog_ok = DWT_ERROR; |
| 1838 |
} |
| 1839 |
|
| 1840 |
_dwt_otpsetmrregs(0); // Setting OTP mode register for low RM read - resetting the device would be alternative |
| 1841 |
|
| 1842 |
return prog_ok;
|
| 1843 |
} |
| 1844 |
|
| 1845 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1846 |
* @fn _dwt_aonconfigupload()
|
| 1847 |
*
|
| 1848 |
* @brief This function uploads always on (AON) configuration, as set in the AON_CFG0_OFFSET register.
|
| 1849 |
*
|
| 1850 |
* input parameters
|
| 1851 |
*
|
| 1852 |
* output parameters
|
| 1853 |
*
|
| 1854 |
* no return value
|
| 1855 |
*/
|
| 1856 |
void _dwt_aonconfigupload(void) |
| 1857 |
{
|
| 1858 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_UPL_CFG); |
| 1859 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
| 1860 |
} |
| 1861 |
|
| 1862 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1863 |
* @fn _dwt_aonarrayupload()
|
| 1864 |
*
|
| 1865 |
* @brief This function uploads always on (AON) data array and configuration. Thus if this function is used, then _dwt_aonconfigupload
|
| 1866 |
* is not necessary. The DW1000 will go so SLEEP straight after this if the DWT_SLP_EN has been set.
|
| 1867 |
*
|
| 1868 |
* input parameters
|
| 1869 |
*
|
| 1870 |
* output parameters
|
| 1871 |
*
|
| 1872 |
* no return value
|
| 1873 |
*/
|
| 1874 |
void _dwt_aonarrayupload(void) |
| 1875 |
{
|
| 1876 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
| 1877 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_SAVE); |
| 1878 |
} |
| 1879 |
|
| 1880 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1881 |
* @fn dwt_entersleep()
|
| 1882 |
*
|
| 1883 |
* @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first
|
| 1884 |
* to configure the sleep and on-wake/wake-up parameters
|
| 1885 |
*
|
| 1886 |
* input parameters
|
| 1887 |
*
|
| 1888 |
* output parameters
|
| 1889 |
*
|
| 1890 |
* no return value
|
| 1891 |
*/
|
| 1892 |
void dwt_entersleep(void) |
| 1893 |
{
|
| 1894 |
// Copy config to AON - upload the new configuration
|
| 1895 |
_dwt_aonarrayupload(); |
| 1896 |
} |
| 1897 |
|
| 1898 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1899 |
* @fn dwt_configuresleepcnt()
|
| 1900 |
*
|
| 1901 |
* @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter
|
| 1902 |
*
|
| 1903 |
* NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz
|
| 1904 |
*
|
| 1905 |
* input parameters
|
| 1906 |
* @param sleepcnt - this it value of the sleep counter to program
|
| 1907 |
*
|
| 1908 |
* output parameters
|
| 1909 |
*
|
| 1910 |
* no return value
|
| 1911 |
*/
|
| 1912 |
void dwt_configuresleepcnt(uint16 sleepcnt)
|
| 1913 |
{
|
| 1914 |
// Force system clock to crystal
|
| 1915 |
_dwt_enableclocks(FORCE_SYS_XTI); |
| 1916 |
|
| 1917 |
// Reset sleep configuration to make sure we don't accidentally go to sleep
|
| 1918 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // NB: this write change the default LPCLKDIVA value which is not used anyway. |
| 1919 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
| 1920 |
|
| 1921 |
// Disable the sleep counter
|
| 1922 |
_dwt_aonconfigupload(); |
| 1923 |
|
| 1924 |
// Set new value
|
| 1925 |
dwt_write16bitoffsetreg(AON_ID, AON_CFG0_OFFSET + AON_CFG0_SLEEP_TIM_OFFSET, sleepcnt); |
| 1926 |
_dwt_aonconfigupload(); |
| 1927 |
|
| 1928 |
// Enable the sleep counter
|
| 1929 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_SLEEP_CEN); |
| 1930 |
_dwt_aonconfigupload(); |
| 1931 |
|
| 1932 |
// Put system PLL back on
|
| 1933 |
_dwt_enableclocks(ENABLE_ALL_SEQ); |
| 1934 |
} |
| 1935 |
|
| 1936 |
|
| 1937 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1938 |
* @fn dwt_calibratesleepcnt()
|
| 1939 |
*
|
| 1940 |
* @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage
|
| 1941 |
*
|
| 1942 |
* NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are
|
| 1943 |
*
|
| 1944 |
* input parameters
|
| 1945 |
*
|
| 1946 |
* output parameters
|
| 1947 |
*
|
| 1948 |
* returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value
|
| 1949 |
*/
|
| 1950 |
uint16 dwt_calibratesleepcnt(void)
|
| 1951 |
{
|
| 1952 |
uint16 result; |
| 1953 |
|
| 1954 |
// Enable calibration of the sleep counter
|
| 1955 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_LPOSC_CAL); |
| 1956 |
_dwt_aonconfigupload(); |
| 1957 |
|
| 1958 |
// Disable calibration of the sleep counter
|
| 1959 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
| 1960 |
_dwt_aonconfigupload(); |
| 1961 |
|
| 1962 |
// Force system clock to crystal
|
| 1963 |
_dwt_enableclocks(FORCE_SYS_XTI); |
| 1964 |
|
| 1965 |
deca_sleep(1);
|
| 1966 |
|
| 1967 |
// Read the number of XTAL/2 cycles one LP oscillator cycle took.
|
| 1968 |
// Set up address - Read upper byte first
|
| 1969 |
dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_1); |
| 1970 |
|
| 1971 |
// Enable manual override
|
| 1972 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
| 1973 |
|
| 1974 |
// Read confirm data that was written
|
| 1975 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
| 1976 |
|
| 1977 |
// Read back byte from AON
|
| 1978 |
result = dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
| 1979 |
result <<= 8;
|
| 1980 |
|
| 1981 |
// Set up address - Read lower byte
|
| 1982 |
dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_0); |
| 1983 |
|
| 1984 |
// Enable manual override
|
| 1985 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
| 1986 |
|
| 1987 |
// Read confirm data that was written
|
| 1988 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
| 1989 |
|
| 1990 |
// Read back byte from AON
|
| 1991 |
result |= dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
| 1992 |
|
| 1993 |
// Disable manual override
|
| 1994 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00);
|
| 1995 |
|
| 1996 |
// Put system PLL back on
|
| 1997 |
_dwt_enableclocks(ENABLE_ALL_SEQ); |
| 1998 |
|
| 1999 |
// Returns the number of XTAL/2 cycles per one LP OSC cycle
|
| 2000 |
// This can be converted into LP OSC frequency by 19.2 MHz/result
|
| 2001 |
return result;
|
| 2002 |
} |
| 2003 |
|
| 2004 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2005 |
* @fn dwt_configuresleep()
|
| 2006 |
*
|
| 2007 |
* @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode
|
| 2008 |
* i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings
|
| 2009 |
* will be preserved and the device can immediately perform the desired action TX/RX
|
| 2010 |
*
|
| 2011 |
* NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame
|
| 2012 |
*
|
| 2013 |
*
|
| 2014 |
* mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist
|
| 2015 |
* DWT_PRESRV_SLEEP 0x0100 - preserve sleep
|
| 2016 |
* DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup
|
| 2017 |
* DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download)
|
| 2018 |
* DWT_LOADEUI 0x0008
|
| 2019 |
* DWT_GOTORX 0x0002
|
| 2020 |
* DWT_TANDV 0x0001
|
| 2021 |
*
|
| 2022 |
* wake: wake up parameters
|
| 2023 |
* DWT_XTAL_EN 0x10 - keep XTAL running during sleep
|
| 2024 |
* DWT_WAKE_SLPCNT 0x8 - wake up after sleep count
|
| 2025 |
* DWT_WAKE_CS 0x4 - wake up on chip select
|
| 2026 |
* DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN
|
| 2027 |
* DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality
|
| 2028 |
*
|
| 2029 |
* input parameters
|
| 2030 |
* @param mode - config on-wake parameters
|
| 2031 |
* @param wake - config wake up parameters
|
| 2032 |
*
|
| 2033 |
* output parameters
|
| 2034 |
*
|
| 2035 |
* no return value
|
| 2036 |
*/
|
| 2037 |
void dwt_configuresleep(uint16 mode, uint8 wake)
|
| 2038 |
{
|
| 2039 |
// Add predefined sleep settings before writing the mode
|
| 2040 |
mode |= pdw1000local->sleep_mode; |
| 2041 |
dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, mode); |
| 2042 |
|
| 2043 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, wake); |
| 2044 |
} |
| 2045 |
|
| 2046 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2047 |
* @fn dwt_entersleepaftertx(int enable)
|
| 2048 |
*
|
| 2049 |
* @brief sets the auto TX to sleep bit. This means that after a frame
|
| 2050 |
* transmission the device will enter deep sleep mode. The dwt_configuresleep() function
|
| 2051 |
* needs to be called before this to configure the on-wake settings
|
| 2052 |
*
|
| 2053 |
* NOTE: the IRQ line has to be low/inactive (i.e. no pending events)
|
| 2054 |
*
|
| 2055 |
* input parameters
|
| 2056 |
* @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration
|
| 2057 |
*
|
| 2058 |
* output parameters
|
| 2059 |
*
|
| 2060 |
* no return value
|
| 2061 |
*/
|
| 2062 |
void dwt_entersleepaftertx(int enable) |
| 2063 |
{
|
| 2064 |
uint32 reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
| 2065 |
// Set the auto TX -> sleep bit
|
| 2066 |
if(enable)
|
| 2067 |
{
|
| 2068 |
reg |= PMSC_CTRL1_ATXSLP; |
| 2069 |
} |
| 2070 |
else
|
| 2071 |
{
|
| 2072 |
reg &= ~(PMSC_CTRL1_ATXSLP); |
| 2073 |
} |
| 2074 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, reg); |
| 2075 |
} |
| 2076 |
|
| 2077 |
|
| 2078 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2079 |
* @fn dwt_spicswakeup()
|
| 2080 |
*
|
| 2081 |
* @brief wake up the device from sleep mode using the SPI read,
|
| 2082 |
* the device will wake up on chip select line going low if the line is held low for at least 500us.
|
| 2083 |
* To define the length depending on the time one wants to hold
|
| 2084 |
* the chip select line low, use the following formula:
|
| 2085 |
*
|
| 2086 |
* length (bytes) = time (s) * byte_rate (Hz)
|
| 2087 |
*
|
| 2088 |
* where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back.
|
| 2089 |
* To save time and power, a system designer could determine byte_rate value more precisely.
|
| 2090 |
*
|
| 2091 |
* NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation
|
| 2092 |
*
|
| 2093 |
* input parameters
|
| 2094 |
* @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device
|
| 2095 |
* @param length - this is the length of the dummy buffer
|
| 2096 |
*
|
| 2097 |
* output parameters
|
| 2098 |
*
|
| 2099 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
| 2100 |
*/
|
| 2101 |
int dwt_spicswakeup(uint8 *buff, uint16 length)
|
| 2102 |
{
|
| 2103 |
if(dwt_readdevid() != DWT_DEVICE_ID) // Device was in deep sleep (the first read fails) |
| 2104 |
{
|
| 2105 |
// Need to keep chip select line low for at least 500us
|
| 2106 |
dwt_readfromdevice(0x0, 0x0, length, buff); // Do a long read to wake up the chip (hold the chip select low) |
| 2107 |
|
| 2108 |
// Need 5ms for XTAL to start and stabilise (could wait for PLL lock IRQ status bit !!!)
|
| 2109 |
// NOTE: Polling of the STATUS register is not possible unless frequency is < 3MHz
|
| 2110 |
deca_sleep(5);
|
| 2111 |
} |
| 2112 |
else
|
| 2113 |
{
|
| 2114 |
return DWT_SUCCESS;
|
| 2115 |
} |
| 2116 |
// DEBUG - check if still in sleep mode
|
| 2117 |
if(dwt_readdevid() != DWT_DEVICE_ID)
|
| 2118 |
{
|
| 2119 |
return DWT_ERROR;
|
| 2120 |
} |
| 2121 |
|
| 2122 |
return DWT_SUCCESS;
|
| 2123 |
} |
| 2124 |
|
| 2125 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2126 |
* @fn _dwt_configlde()
|
| 2127 |
*
|
| 2128 |
* @brief configure LDE algorithm parameters
|
| 2129 |
*
|
| 2130 |
* input parameters
|
| 2131 |
* @param prf - this is the PRF index (0 or 1) 0 corresponds to 16 and 1 to 64 PRF
|
| 2132 |
*
|
| 2133 |
* output parameters
|
| 2134 |
*
|
| 2135 |
* no return value
|
| 2136 |
*/
|
| 2137 |
void _dwt_configlde(int prfIndex) |
| 2138 |
{
|
| 2139 |
dwt_write8bitoffsetreg(LDE_IF_ID, LDE_CFG1_OFFSET, LDE_PARAM1); // 8-bit configuration register
|
| 2140 |
|
| 2141 |
if(prfIndex)
|
| 2142 |
{
|
| 2143 |
dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_64); // 16-bit LDE configuration tuning register
|
| 2144 |
} |
| 2145 |
else
|
| 2146 |
{
|
| 2147 |
dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_16); |
| 2148 |
} |
| 2149 |
} |
| 2150 |
|
| 2151 |
|
| 2152 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2153 |
* @fn _dwt_loaducodefromrom()
|
| 2154 |
*
|
| 2155 |
* @brief load ucode from OTP MEMORY or ROM
|
| 2156 |
*
|
| 2157 |
* input parameters
|
| 2158 |
*
|
| 2159 |
* output parameters
|
| 2160 |
*
|
| 2161 |
* no return value
|
| 2162 |
*/
|
| 2163 |
void _dwt_loaducodefromrom(void) |
| 2164 |
{
|
| 2165 |
// Set up clocks
|
| 2166 |
_dwt_enableclocks(FORCE_LDE); |
| 2167 |
|
| 2168 |
// Kick off the LDE load
|
| 2169 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_LDELOAD); // Set load LDE kick bit
|
| 2170 |
|
| 2171 |
deca_sleep(1); // Allow time for code to upload (should take up to 120 us) |
| 2172 |
|
| 2173 |
// Default clocks (ENABLE_ALL_SEQ)
|
| 2174 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
| 2175 |
} |
| 2176 |
|
| 2177 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2178 |
* @fn dwt_loadopsettabfromotp()
|
| 2179 |
*
|
| 2180 |
* @brief This is used to select which Operational Parameter Set table to load from OTP memory
|
| 2181 |
*
|
| 2182 |
* input parameters
|
| 2183 |
* @param ops_sel - Operational Parameter Set table to load:
|
| 2184 |
* DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration
|
| 2185 |
* DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm)
|
| 2186 |
* DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset)
|
| 2187 |
*
|
| 2188 |
* output parameters
|
| 2189 |
*
|
| 2190 |
* no return value
|
| 2191 |
*/
|
| 2192 |
void dwt_loadopsettabfromotp(uint8 ops_sel)
|
| 2193 |
{
|
| 2194 |
uint16 reg = ((ops_sel << OTP_SF_OPS_SEL_SHFT) & OTP_SF_OPS_SEL_MASK) | OTP_SF_OPS_KICK; // Select defined OPS table and trigger its loading
|
| 2195 |
|
| 2196 |
// Set up clocks
|
| 2197 |
_dwt_enableclocks(FORCE_LDE); |
| 2198 |
|
| 2199 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_SF, reg); |
| 2200 |
|
| 2201 |
// Default clocks (ENABLE_ALL_SEQ)
|
| 2202 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
| 2203 |
|
| 2204 |
} |
| 2205 |
|
| 2206 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2207 |
* @fn dwt_setsmarttxpower()
|
| 2208 |
*
|
| 2209 |
* @brief This call enables or disables the smart TX power feature.
|
| 2210 |
*
|
| 2211 |
* input parameters
|
| 2212 |
* @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable)
|
| 2213 |
*
|
| 2214 |
* output parameters
|
| 2215 |
*
|
| 2216 |
* no return value
|
| 2217 |
*/
|
| 2218 |
void dwt_setsmarttxpower(int enable) |
| 2219 |
{
|
| 2220 |
// Config system register
|
| 2221 |
pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
| 2222 |
|
| 2223 |
// Disable smart power configuration
|
| 2224 |
if(enable)
|
| 2225 |
{
|
| 2226 |
pdw1000local->sysCFGreg &= ~(SYS_CFG_DIS_STXP) ; |
| 2227 |
} |
| 2228 |
else
|
| 2229 |
{
|
| 2230 |
pdw1000local->sysCFGreg |= SYS_CFG_DIS_STXP ; |
| 2231 |
} |
| 2232 |
|
| 2233 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
| 2234 |
} |
| 2235 |
|
| 2236 |
|
| 2237 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2238 |
* @fn dwt_enableautoack()
|
| 2239 |
*
|
| 2240 |
* @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p.
|
| 2241 |
* otherwise it will be sent with a programmed delay (in symbols), max is 255.
|
| 2242 |
* NOTE: needs to have frame filtering enabled as well
|
| 2243 |
*
|
| 2244 |
* input parameters
|
| 2245 |
* @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255.
|
| 2246 |
*
|
| 2247 |
* output parameters
|
| 2248 |
*
|
| 2249 |
* no return value
|
| 2250 |
*/
|
| 2251 |
void dwt_enableautoack(uint8 responseDelayTime)
|
| 2252 |
{
|
| 2253 |
// Set auto ACK reply delay
|
| 2254 |
dwt_write8bitoffsetreg(ACK_RESP_T_ID, ACK_RESP_T_ACK_TIM_OFFSET, responseDelayTime); // In symbols
|
| 2255 |
// Enable auto ACK
|
| 2256 |
pdw1000local->sysCFGreg |= SYS_CFG_AUTOACK; |
| 2257 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
| 2258 |
} |
| 2259 |
|
| 2260 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2261 |
* @fn dwt_setdblrxbuffmode()
|
| 2262 |
*
|
| 2263 |
* @brief This call enables the double receive buffer mode
|
| 2264 |
*
|
| 2265 |
* input parameters
|
| 2266 |
* @param enable - 1 to enable, 0 to disable the double buffer mode
|
| 2267 |
*
|
| 2268 |
* output parameters
|
| 2269 |
*
|
| 2270 |
* no return value
|
| 2271 |
*/
|
| 2272 |
void dwt_setdblrxbuffmode(int enable) |
| 2273 |
{
|
| 2274 |
if(enable)
|
| 2275 |
{
|
| 2276 |
// Enable double RX buffer mode
|
| 2277 |
pdw1000local->sysCFGreg &= ~SYS_CFG_DIS_DRXB; |
| 2278 |
pdw1000local->dblbuffon = 1;
|
| 2279 |
} |
| 2280 |
else
|
| 2281 |
{
|
| 2282 |
// Disable double RX buffer mode
|
| 2283 |
pdw1000local->sysCFGreg |= SYS_CFG_DIS_DRXB; |
| 2284 |
pdw1000local->dblbuffon = 0;
|
| 2285 |
} |
| 2286 |
|
| 2287 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
| 2288 |
} |
| 2289 |
|
| 2290 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2291 |
* @fn dwt_setrxaftertxdelay()
|
| 2292 |
*
|
| 2293 |
* @brief This sets the receiver turn on delay time after a transmission of a frame
|
| 2294 |
*
|
| 2295 |
* input parameters
|
| 2296 |
* @param rxDelayTime - (20 bits) - the delay is in UWB microseconds
|
| 2297 |
*
|
| 2298 |
* output parameters
|
| 2299 |
*
|
| 2300 |
* no return value
|
| 2301 |
*/
|
| 2302 |
void dwt_setrxaftertxdelay(uint32 rxDelayTime)
|
| 2303 |
{
|
| 2304 |
uint32 val = dwt_read32bitreg(ACK_RESP_T_ID) ; // Read ACK_RESP_T_ID register
|
| 2305 |
|
| 2306 |
val &= ~(ACK_RESP_T_W4R_TIM_MASK) ; // Clear the timer (19:0)
|
| 2307 |
|
| 2308 |
val |= (rxDelayTime & ACK_RESP_T_W4R_TIM_MASK) ; // In UWB microseconds (e.g. turn the receiver on 20uus after TX)
|
| 2309 |
|
| 2310 |
dwt_write32bitreg(ACK_RESP_T_ID, val) ; |
| 2311 |
} |
| 2312 |
|
| 2313 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2314 |
* @fn dwt_setcallbacks()
|
| 2315 |
*
|
| 2316 |
* @brief This function is used to register the different callbacks called when one of the corresponding event occurs.
|
| 2317 |
*
|
| 2318 |
* NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null'
|
| 2319 |
* callback will not be called.
|
| 2320 |
*
|
| 2321 |
* input parameters
|
| 2322 |
* @param cbTxDone - the pointer to the TX confirmation event callback function
|
| 2323 |
* @param cbRxOk - the pointer to the RX good frame event callback function
|
| 2324 |
* @param cbRxTo - the pointer to the RX timeout events callback function
|
| 2325 |
* @param cbRxErr - the pointer to the RX error events callback function
|
| 2326 |
*
|
| 2327 |
* output parameters
|
| 2328 |
*
|
| 2329 |
* no return value
|
| 2330 |
*/
|
| 2331 |
void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr)
|
| 2332 |
{
|
| 2333 |
pdw1000local->cbTxDone = cbTxDone; |
| 2334 |
pdw1000local->cbRxOk = cbRxOk; |
| 2335 |
pdw1000local->cbRxTo = cbRxTo; |
| 2336 |
pdw1000local->cbRxErr = cbRxErr; |
| 2337 |
} |
| 2338 |
|
| 2339 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2340 |
* @fn dwt_checkirq()
|
| 2341 |
*
|
| 2342 |
* @brief This function checks if the IRQ line is active - this is used instead of interrupt handler
|
| 2343 |
*
|
| 2344 |
* input parameters
|
| 2345 |
*
|
| 2346 |
* output parameters
|
| 2347 |
*
|
| 2348 |
* return value is 1 if the IRQS bit is set and 0 otherwise
|
| 2349 |
*/
|
| 2350 |
uint8 dwt_checkirq(void)
|
| 2351 |
{
|
| 2352 |
return (dwt_read8bitoffsetreg(SYS_STATUS_ID, SYS_STATUS_OFFSET) & SYS_STATUS_IRQS); // Reading the lower byte only is enough for this operation |
| 2353 |
} |
| 2354 |
|
| 2355 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2356 |
* @fn dwt_isr()
|
| 2357 |
*
|
| 2358 |
* @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events:
|
| 2359 |
* - RXFCG (through cbRxOk callback)
|
| 2360 |
* - TXFRS (through cbTxDone callback)
|
| 2361 |
* - RXRFTO/RXPTO (through cbRxTo callback)
|
| 2362 |
* - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr)
|
| 2363 |
* For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case,
|
| 2364 |
* received frame information and frame control are read before calling the callback. If double buffering is activated, it
|
| 2365 |
* will also toggle between reception buffers once the reception callback processing has ended.
|
| 2366 |
*
|
| 2367 |
* /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling!
|
| 2368 |
*
|
| 2369 |
* NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something
|
| 2370 |
* to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered
|
| 2371 |
* on any of the interrupts described above.
|
| 2372 |
|
| 2373 |
* input parameters
|
| 2374 |
*
|
| 2375 |
* output parameters
|
| 2376 |
*
|
| 2377 |
* no return value
|
| 2378 |
*/
|
| 2379 |
void dwt_isr(void) |
| 2380 |
{
|
| 2381 |
uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
| 2382 |
|
| 2383 |
// Handle RX good frame event
|
| 2384 |
if(status & SYS_STATUS_RXFCG)
|
| 2385 |
{
|
| 2386 |
uint16 finfo16; |
| 2387 |
uint16 len; |
| 2388 |
|
| 2389 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
| 2390 |
|
| 2391 |
pdw1000local->cbData.rx_flags = 0;
|
| 2392 |
|
| 2393 |
// Read frame info - Only the first two bytes of the register are used here.
|
| 2394 |
finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, RX_FINFO_OFFSET); |
| 2395 |
|
| 2396 |
// Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
| 2397 |
len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
| 2398 |
if(pdw1000local->longFrames == 0) |
| 2399 |
{
|
| 2400 |
len &= RX_FINFO_RXFLEN_MASK; |
| 2401 |
} |
| 2402 |
pdw1000local->cbData.datalength = len; |
| 2403 |
|
| 2404 |
// Report ranging bit
|
| 2405 |
if(finfo16 & RX_FINFO_RNG)
|
| 2406 |
{
|
| 2407 |
pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
| 2408 |
} |
| 2409 |
|
| 2410 |
// Report frame control - First bytes of the received frame.
|
| 2411 |
dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
| 2412 |
|
| 2413 |
// Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
| 2414 |
// acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
| 2415 |
// implementation works only for IEEE802.15.4-2011 compliant frames).
|
| 2416 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
| 2417 |
if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
| 2418 |
{
|
| 2419 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
| 2420 |
pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
| 2421 |
pdw1000local->wait4resp = 0;
|
| 2422 |
} |
| 2423 |
|
| 2424 |
// Call the corresponding callback if present
|
| 2425 |
if(pdw1000local->cbRxOk != NULL) |
| 2426 |
{
|
| 2427 |
pdw1000local->cbRxOk(&pdw1000local->cbData); |
| 2428 |
} |
| 2429 |
|
| 2430 |
if (pdw1000local->dblbuffon)
|
| 2431 |
{
|
| 2432 |
// Toggle the Host side Receive Buffer Pointer
|
| 2433 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET, 1);
|
| 2434 |
} |
| 2435 |
} |
| 2436 |
|
| 2437 |
// Handle TX confirmation event
|
| 2438 |
if(status & SYS_STATUS_TXFRS)
|
| 2439 |
{
|
| 2440 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_TX); // Clear TX event bits
|
| 2441 |
|
| 2442 |
// In the case where this TXFRS interrupt is due to the automatic transmission of an ACK solicited by a response (with ACK request bit set)
|
| 2443 |
// that we receive through using wait4resp to a previous TX (and assuming that the IRQ processing of that TX has already been handled), then
|
| 2444 |
// we need to handle the IC issue which turns on the RX again in this situation (i.e. because it is wrongly applying the wait4resp after the
|
| 2445 |
// ACK TX).
|
| 2446 |
// See section "Transmit and automatically wait for response" in DW1000 User Manual
|
| 2447 |
if((status & SYS_STATUS_AAT) && pdw1000local->wait4resp)
|
| 2448 |
{
|
| 2449 |
dwt_forcetrxoff(); // Turn the RX off
|
| 2450 |
dwt_rxreset(); // Reset in case we were late and a frame was already being received
|
| 2451 |
} |
| 2452 |
|
| 2453 |
// Call the corresponding callback if present
|
| 2454 |
if(pdw1000local->cbTxDone != NULL) |
| 2455 |
{
|
| 2456 |
pdw1000local->cbTxDone(&pdw1000local->cbData); |
| 2457 |
} |
| 2458 |
} |
| 2459 |
|
| 2460 |
// Handle frame reception/preamble detect timeout events
|
| 2461 |
if(status & SYS_STATUS_ALL_RX_TO)
|
| 2462 |
{
|
| 2463 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXRFTO); // Clear RX timeout event bits
|
| 2464 |
|
| 2465 |
pdw1000local->wait4resp = 0;
|
| 2466 |
|
| 2467 |
// Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
| 2468 |
// the next good frame's timestamp is computed correctly.
|
| 2469 |
// See section "RX Message timestamp" in DW1000 User Manual.
|
| 2470 |
dwt_forcetrxoff(); |
| 2471 |
dwt_rxreset(); |
| 2472 |
|
| 2473 |
// Call the corresponding callback if present
|
| 2474 |
if(pdw1000local->cbRxTo != NULL) |
| 2475 |
{
|
| 2476 |
pdw1000local->cbRxTo(&pdw1000local->cbData); |
| 2477 |
} |
| 2478 |
} |
| 2479 |
|
| 2480 |
// Handle RX errors events
|
| 2481 |
if(status & SYS_STATUS_ALL_RX_ERR)
|
| 2482 |
{
|
| 2483 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); // Clear RX error event bits
|
| 2484 |
|
| 2485 |
pdw1000local->wait4resp = 0;
|
| 2486 |
|
| 2487 |
// Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
| 2488 |
// the next good frame's timestamp is computed correctly.
|
| 2489 |
// See section "RX Message timestamp" in DW1000 User Manual.
|
| 2490 |
dwt_forcetrxoff(); |
| 2491 |
dwt_rxreset(); |
| 2492 |
|
| 2493 |
// Call the corresponding callback if present
|
| 2494 |
if(pdw1000local->cbRxErr != NULL) |
| 2495 |
{
|
| 2496 |
pdw1000local->cbRxErr(&pdw1000local->cbData); |
| 2497 |
} |
| 2498 |
} |
| 2499 |
} |
| 2500 |
|
| 2501 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2502 |
* @fn dwt_isr_lplisten()
|
| 2503 |
*
|
| 2504 |
* @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will
|
| 2505 |
* only process/report the RXFCG event (through cbRxOk callback).
|
| 2506 |
* It clears RXFCG interrupt and reads received frame information and frame control before calling the callback.
|
| 2507 |
*
|
| 2508 |
* /!\ This version of the ISR is designed for single buffering case only!
|
| 2509 |
*
|
| 2510 |
* input parameters
|
| 2511 |
*
|
| 2512 |
* output parameters
|
| 2513 |
*
|
| 2514 |
* no return value
|
| 2515 |
*/
|
| 2516 |
void dwt_lowpowerlistenisr(void) |
| 2517 |
{
|
| 2518 |
uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
| 2519 |
uint16 finfo16; |
| 2520 |
uint16 len; |
| 2521 |
|
| 2522 |
// The only interrupt handled when in low-power listening mode is RX good frame so proceed directly to the handling of the received frame.
|
| 2523 |
|
| 2524 |
// Deactivate low-power listening before clearing the interrupt. If not, the DW1000 will go back to sleep as soon as the interrupt is cleared.
|
| 2525 |
dwt_setlowpowerlistening(0);
|
| 2526 |
|
| 2527 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
| 2528 |
|
| 2529 |
pdw1000local->cbData.rx_flags = 0;
|
| 2530 |
|
| 2531 |
// Read frame info - Only the first two bytes of the register are used here.
|
| 2532 |
finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, 0);
|
| 2533 |
|
| 2534 |
// Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
| 2535 |
len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
| 2536 |
if(pdw1000local->longFrames == 0) |
| 2537 |
{
|
| 2538 |
len &= RX_FINFO_RXFLEN_MASK; |
| 2539 |
} |
| 2540 |
pdw1000local->cbData.datalength = len; |
| 2541 |
|
| 2542 |
// Report ranging bit
|
| 2543 |
if(finfo16 & RX_FINFO_RNG)
|
| 2544 |
{
|
| 2545 |
pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
| 2546 |
} |
| 2547 |
|
| 2548 |
// Report frame control - First bytes of the received frame.
|
| 2549 |
dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
| 2550 |
|
| 2551 |
// Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
| 2552 |
// acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
| 2553 |
// implementation works only for IEEE802.15.4-2011 compliant frames).
|
| 2554 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
| 2555 |
if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
| 2556 |
{
|
| 2557 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
| 2558 |
pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
| 2559 |
pdw1000local->wait4resp = 0;
|
| 2560 |
} |
| 2561 |
|
| 2562 |
// Call the corresponding callback if present
|
| 2563 |
if(pdw1000local->cbRxOk != NULL) |
| 2564 |
{
|
| 2565 |
pdw1000local->cbRxOk(&pdw1000local->cbData); |
| 2566 |
} |
| 2567 |
} |
| 2568 |
|
| 2569 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2570 |
* @fn dwt_setleds()
|
| 2571 |
*
|
| 2572 |
* @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs
|
| 2573 |
* Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines
|
| 2574 |
* this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000
|
| 2575 |
*
|
| 2576 |
* input parameters
|
| 2577 |
* @param mode - this is a bit field interpreted as follows:
|
| 2578 |
* - bit 0: 1 to enable LEDs, 0 to disable them
|
| 2579 |
* - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs)
|
| 2580 |
* - bit 2 to 7: reserved
|
| 2581 |
*
|
| 2582 |
* output parameters none
|
| 2583 |
*
|
| 2584 |
* no return value
|
| 2585 |
*/
|
| 2586 |
void dwt_setleds(uint8 mode)
|
| 2587 |
{
|
| 2588 |
uint32 reg; |
| 2589 |
|
| 2590 |
if (mode & DWT_LEDS_ENABLE)
|
| 2591 |
{
|
| 2592 |
// Set up MFIO for LED output.
|
| 2593 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
| 2594 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
| 2595 |
reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); |
| 2596 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
| 2597 |
|
| 2598 |
// Enable LP Oscillator to run from counter and turn on de-bounce clock.
|
| 2599 |
reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
| 2600 |
reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); |
| 2601 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); |
| 2602 |
|
| 2603 |
// Enable LEDs to blink and set default blink time.
|
| 2604 |
reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; |
| 2605 |
// Make LEDs blink once if requested.
|
| 2606 |
if (mode & DWT_LEDS_INIT_BLINK)
|
| 2607 |
{
|
| 2608 |
reg |= PMSC_LEDC_BLINK_NOW_ALL; |
| 2609 |
} |
| 2610 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
| 2611 |
// Clear force blink bits if needed.
|
| 2612 |
if(mode & DWT_LEDS_INIT_BLINK)
|
| 2613 |
{
|
| 2614 |
reg &= ~PMSC_LEDC_BLINK_NOW_ALL; |
| 2615 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
| 2616 |
} |
| 2617 |
} |
| 2618 |
else
|
| 2619 |
{
|
| 2620 |
// Clear the GPIO bits that are used for LED control.
|
| 2621 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
| 2622 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
| 2623 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
| 2624 |
} |
| 2625 |
} |
| 2626 |
|
| 2627 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2628 |
* @fn _dwt_enableclocks()
|
| 2629 |
*
|
| 2630 |
* @brief function to enable/disable clocks to particular digital blocks/system
|
| 2631 |
*
|
| 2632 |
* input parameters
|
| 2633 |
* @param clocks - set of clocks to enable/disable
|
| 2634 |
*
|
| 2635 |
* output parameters none
|
| 2636 |
*
|
| 2637 |
* no return value
|
| 2638 |
*/
|
| 2639 |
void _dwt_enableclocks(int clocks) |
| 2640 |
{
|
| 2641 |
uint8 reg[2];
|
| 2642 |
|
| 2643 |
dwt_readfromdevice(PMSC_ID, PMSC_CTRL0_OFFSET, 2, reg);
|
| 2644 |
switch(clocks)
|
| 2645 |
{
|
| 2646 |
case ENABLE_ALL_SEQ:
|
| 2647 |
{
|
| 2648 |
reg[0] = 0x00 ; |
| 2649 |
reg[1] = reg[1] & 0xfe; |
| 2650 |
} |
| 2651 |
break;
|
| 2652 |
case FORCE_SYS_XTI:
|
| 2653 |
{
|
| 2654 |
// System and RX
|
| 2655 |
reg[0] = 0x01 | (reg[0] & 0xfc); |
| 2656 |
} |
| 2657 |
break;
|
| 2658 |
case FORCE_SYS_PLL:
|
| 2659 |
{
|
| 2660 |
// System
|
| 2661 |
reg[0] = 0x02 | (reg[0] & 0xfc); |
| 2662 |
} |
| 2663 |
break;
|
| 2664 |
case READ_ACC_ON:
|
| 2665 |
{
|
| 2666 |
reg[0] = 0x48 | (reg[0] & 0xb3); |
| 2667 |
reg[1] = 0x80 | reg[1]; |
| 2668 |
} |
| 2669 |
break;
|
| 2670 |
case READ_ACC_OFF:
|
| 2671 |
{
|
| 2672 |
reg[0] = reg[0] & 0xb3; |
| 2673 |
reg[1] = 0x7f & reg[1]; |
| 2674 |
} |
| 2675 |
break;
|
| 2676 |
case FORCE_OTP_ON:
|
| 2677 |
{
|
| 2678 |
reg[1] = 0x02 | reg[1]; |
| 2679 |
} |
| 2680 |
break;
|
| 2681 |
case FORCE_OTP_OFF:
|
| 2682 |
{
|
| 2683 |
reg[1] = reg[1] & 0xfd; |
| 2684 |
} |
| 2685 |
break;
|
| 2686 |
case FORCE_TX_PLL:
|
| 2687 |
{
|
| 2688 |
reg[0] = 0x20 | (reg[0] & 0xcf); |
| 2689 |
} |
| 2690 |
break;
|
| 2691 |
case FORCE_LDE:
|
| 2692 |
{
|
| 2693 |
reg[0] = 0x01; |
| 2694 |
reg[1] = 0x03; |
| 2695 |
} |
| 2696 |
break;
|
| 2697 |
default:
|
| 2698 |
break;
|
| 2699 |
} |
| 2700 |
|
| 2701 |
|
| 2702 |
// Need to write lower byte separately before setting the higher byte(s)
|
| 2703 |
dwt_writetodevice(PMSC_ID, PMSC_CTRL0_OFFSET, 1, ®[0]); |
| 2704 |
dwt_writetodevice(PMSC_ID, 0x1, 1, ®[1]); |
| 2705 |
|
| 2706 |
} // end _dwt_enableclocks()
|
| 2707 |
|
| 2708 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2709 |
* @fn _dwt_disablesequencing()
|
| 2710 |
*
|
| 2711 |
* @brief This function disables the TX blocks sequencing, it disables PMSC control of RF blocks, system clock is also set to XTAL
|
| 2712 |
*
|
| 2713 |
* input parameters none
|
| 2714 |
*
|
| 2715 |
* output parameters none
|
| 2716 |
*
|
| 2717 |
* no return value
|
| 2718 |
*/
|
| 2719 |
void _dwt_disablesequencing(void) // Disable sequencing and go to state "INIT" |
| 2720 |
{
|
| 2721 |
_dwt_enableclocks(FORCE_SYS_XTI); // Set system clock to XTI
|
| 2722 |
|
| 2723 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); // Disable PMSC ctrl of RF and RX clk blocks
|
| 2724 |
} |
| 2725 |
|
| 2726 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2727 |
* @fn dwt_setdelayedtrxtime()
|
| 2728 |
*
|
| 2729 |
* @brief This API function configures the delayed transmit time or the delayed RX on time
|
| 2730 |
*
|
| 2731 |
* input parameters
|
| 2732 |
* @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message,
|
| 2733 |
* or at which to turn on the receiver)
|
| 2734 |
*
|
| 2735 |
* output parameters none
|
| 2736 |
*
|
| 2737 |
* no return value
|
| 2738 |
*/
|
| 2739 |
void dwt_setdelayedtrxtime(uint32 starttime)
|
| 2740 |
{
|
| 2741 |
dwt_write32bitoffsetreg(DX_TIME_ID, 1, starttime); // Write at offset 1 as the lower 9 bits of this register are ignored |
| 2742 |
|
| 2743 |
} // end dwt_setdelayedtrxtime()
|
| 2744 |
|
| 2745 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2746 |
* @fn dwt_starttx()
|
| 2747 |
*
|
| 2748 |
* @brief This call initiates the transmission, input parameter indicates which TX mode is used see below
|
| 2749 |
*
|
| 2750 |
* input parameters:
|
| 2751 |
* @param mode - if mode = DWT_START_TX_IMMEDIATE - immediate TX (no response expected)
|
| 2752 |
* if mode = DWT_START_TX_DELAYED - delayed TX (no response expected)
|
| 2753 |
* if mode = DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED - immediate TX (response expected - so the receiver will be automatically turned on after TX is done)
|
| 2754 |
* if mode = DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED - delayed TX (response expected - so the receiver will be automatically turned on after TX is done)
|
| 2755 |
*
|
| 2756 |
* output parameters
|
| 2757 |
*
|
| 2758 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will be cancelled if the delayed time has passed)
|
| 2759 |
*/
|
| 2760 |
|
| 2761 |
int dwt_starttx(uint8 mode)
|
| 2762 |
{
|
| 2763 |
int retval = DWT_SUCCESS ;
|
| 2764 |
uint8 temp = 0x00;
|
| 2765 |
uint16 checkTxOK = 0 ;
|
| 2766 |
|
| 2767 |
if(mode & DWT_RESPONSE_EXPECTED)
|
| 2768 |
{
|
| 2769 |
temp = (uint8)SYS_CTRL_WAIT4RESP ; // Set wait4response bit
|
| 2770 |
pdw1000local->wait4resp = 1;
|
| 2771 |
} |
| 2772 |
|
| 2773 |
if (mode & DWT_START_TX_DELAYED)
|
| 2774 |
{
|
| 2775 |
// Both SYS_CTRL_TXSTRT and SYS_CTRL_TXDLYS to correctly enable TX
|
| 2776 |
temp |= (uint8)(SYS_CTRL_TXDLYS | SYS_CTRL_TXSTRT) ; |
| 2777 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
| 2778 |
checkTxOK = dwt_read16bitoffsetreg(SYS_STATUS_ID, 3); // Read at offset 3 to get the upper 2 bytes out of 5 |
| 2779 |
if ((checkTxOK & SYS_STATUS_TXERR) == 0) // Transmit Delayed Send set over Half a Period away or Power Up error (there is enough time to send but not to power up individual blocks). |
| 2780 |
{
|
| 2781 |
retval = DWT_SUCCESS ; // All okay
|
| 2782 |
} |
| 2783 |
else
|
| 2784 |
{
|
| 2785 |
// If HPDWARN or TXPUTE are set this indicates that the TXDLYS was set too late for the specified DX_TIME.
|
| 2786 |
// remedial action is to cancel delayed send and report error
|
| 2787 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF); |
| 2788 |
retval = DWT_ERROR ; // Failed !
|
| 2789 |
} |
| 2790 |
} |
| 2791 |
else
|
| 2792 |
{
|
| 2793 |
temp |= (uint8)SYS_CTRL_TXSTRT ; |
| 2794 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
| 2795 |
} |
| 2796 |
|
| 2797 |
return retval;
|
| 2798 |
|
| 2799 |
} // end dwt_starttx()
|
| 2800 |
|
| 2801 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2802 |
* @fn dwt_forcetrxoff()
|
| 2803 |
*
|
| 2804 |
* @brief This is used to turn off the transceiver
|
| 2805 |
*
|
| 2806 |
* input parameters
|
| 2807 |
*
|
| 2808 |
* output parameters
|
| 2809 |
*
|
| 2810 |
* no return value
|
| 2811 |
*/
|
| 2812 |
void dwt_forcetrxoff(void) |
| 2813 |
{
|
| 2814 |
decaIrqStatus_t stat ; |
| 2815 |
uint32 mask; |
| 2816 |
|
| 2817 |
mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read set interrupt mask
|
| 2818 |
|
| 2819 |
// Need to beware of interrupts occurring in the middle of following read modify write cycle
|
| 2820 |
// We can disable the radio, but before the status is cleared an interrupt can be set (e.g. the
|
| 2821 |
// event has just happened before the radio was disabled)
|
| 2822 |
// thus we need to disable interrupt during this operation
|
| 2823 |
stat = decamutexon() ; |
| 2824 |
|
| 2825 |
dwt_write32bitreg(SYS_MASK_ID, 0) ; // Clear interrupt mask - so we don't get any unwanted events |
| 2826 |
|
| 2827 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF) ; // Disable the radio
|
| 2828 |
|
| 2829 |
// Forcing Transceiver off - so we do not want to see any new events that may have happened
|
| 2830 |
dwt_write32bitreg(SYS_STATUS_ID, (SYS_STATUS_ALL_TX | SYS_STATUS_ALL_RX_ERR | SYS_STATUS_ALL_RX_TO | SYS_STATUS_ALL_RX_GOOD)); |
| 2831 |
|
| 2832 |
dwt_syncrxbufptrs(); |
| 2833 |
|
| 2834 |
dwt_write32bitreg(SYS_MASK_ID, mask) ; // Set interrupt mask to what it was
|
| 2835 |
|
| 2836 |
// Enable/restore interrupts again...
|
| 2837 |
decamutexoff(stat) ; |
| 2838 |
pdw1000local->wait4resp = 0;
|
| 2839 |
|
| 2840 |
} // end deviceforcetrxoff()
|
| 2841 |
|
| 2842 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2843 |
* @fn dwt_syncrxbufptrs()
|
| 2844 |
*
|
| 2845 |
* @brief this function synchronizes rx buffer pointers
|
| 2846 |
* need to make sure that the host/IC buffer pointers are aligned before starting RX
|
| 2847 |
*
|
| 2848 |
* input parameters:
|
| 2849 |
*
|
| 2850 |
* output parameters
|
| 2851 |
*
|
| 2852 |
* no return value
|
| 2853 |
*/
|
| 2854 |
void dwt_syncrxbufptrs(void) |
| 2855 |
{
|
| 2856 |
uint8 buff ; |
| 2857 |
// Need to make sure that the host/IC buffer pointers are aligned before starting RX
|
| 2858 |
buff = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
| 2859 |
|
| 2860 |
if((buff & (SYS_STATUS_ICRBP >> 24)) != // IC side Receive Buffer Pointer |
| 2861 |
((buff & (SYS_STATUS_HSRBP>>24)) << 1) ) // Host Side Receive Buffer Pointer |
| 2862 |
{
|
| 2863 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET , 0x01) ; // We need to swap RX buffer status reg (write one to toggle internally) |
| 2864 |
} |
| 2865 |
} |
| 2866 |
|
| 2867 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2868 |
* @fn dwt_setsniffmode()
|
| 2869 |
*
|
| 2870 |
* @brief enable/disable and configure SNIFF mode.
|
| 2871 |
*
|
| 2872 |
* SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time.
|
| 2873 |
* The time spent in each state (on/off) is specified through the parameters below.
|
| 2874 |
* See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details.
|
| 2875 |
*
|
| 2876 |
* input parameters:
|
| 2877 |
* @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account.
|
| 2878 |
* @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
| 2879 |
* size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15.
|
| 2880 |
* @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 ?s (~1 ?s). Max value is 255.
|
| 2881 |
*
|
| 2882 |
* output parameters
|
| 2883 |
*
|
| 2884 |
* no return value
|
| 2885 |
*/
|
| 2886 |
void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff) |
| 2887 |
{
|
| 2888 |
uint32 pmsc_reg; |
| 2889 |
if (enable)
|
| 2890 |
{
|
| 2891 |
/* Configure ON/OFF times and enable PLL2 on/off sequencing by SNIFF mode. */
|
| 2892 |
uint16 sniff_reg = (((uint16)timeOff << 8) | timeOn) & RX_SNIFF_MASK;
|
| 2893 |
dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, sniff_reg); |
| 2894 |
pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
| 2895 |
pmsc_reg |= PMSC_CTRL0_PLL2_SEQ_EN; |
| 2896 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
| 2897 |
} |
| 2898 |
else
|
| 2899 |
{
|
| 2900 |
/* Clear ON/OFF times and disable PLL2 on/off sequencing by SNIFF mode. */
|
| 2901 |
dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, 0x0000);
|
| 2902 |
pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
| 2903 |
pmsc_reg &= ~PMSC_CTRL0_PLL2_SEQ_EN; |
| 2904 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
| 2905 |
} |
| 2906 |
} |
| 2907 |
|
| 2908 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2909 |
* @fn dwt_setlowpowerlistening()
|
| 2910 |
*
|
| 2911 |
* @brief enable/disable low-power listening mode.
|
| 2912 |
*
|
| 2913 |
* Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after
|
| 2914 |
* this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening"
|
| 2915 |
* phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power
|
| 2916 |
* Listening" for more details.
|
| 2917 |
*
|
| 2918 |
* NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it:
|
| 2919 |
* - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP,
|
| 2920 |
* DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set.
|
| 2921 |
* - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration.
|
| 2922 |
* - dwt_setsnoozetime() to define the "short sleep" phase duration.
|
| 2923 |
* - dwt_setpreambledetecttimeout() to define the reception phases duration.
|
| 2924 |
* - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only.
|
| 2925 |
* When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using
|
| 2926 |
* dwt_entersleep()) or by activating reception (using dwt_rxenable()).
|
| 2927 |
*
|
| 2928 |
* Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's
|
| 2929 |
* website). They form a working example code that shows how to use low-power listening correctly.
|
| 2930 |
*
|
| 2931 |
* input parameters:
|
| 2932 |
* @param enable - 1 to enable low-power listening, 0 to disable.
|
| 2933 |
*
|
| 2934 |
* output parameters
|
| 2935 |
*
|
| 2936 |
* no return value
|
| 2937 |
*/
|
| 2938 |
void dwt_setlowpowerlistening(int enable) |
| 2939 |
{
|
| 2940 |
uint32 pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
| 2941 |
if (enable)
|
| 2942 |
{
|
| 2943 |
/* Configure RX to sleep and snooze features. */
|
| 2944 |
pmsc_reg |= (PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
| 2945 |
} |
| 2946 |
else
|
| 2947 |
{
|
| 2948 |
/* Reset RX to sleep and snooze features. */
|
| 2949 |
pmsc_reg &= ~(PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
| 2950 |
} |
| 2951 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, pmsc_reg); |
| 2952 |
} |
| 2953 |
|
| 2954 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2955 |
* @fn dwt_setsnoozetime()
|
| 2956 |
*
|
| 2957 |
* @brief Set duration of "short sleep" phase when in low-power listening mode.
|
| 2958 |
*
|
| 2959 |
* input parameters:
|
| 2960 |
* @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 ?s (~26.7 ?s). The counter
|
| 2961 |
* automatically adds 1 to the value set. The smallest working value that should be set is 1,
|
| 2962 |
* i.e. giving a snooze time of 2 units (or ~53 ?s).
|
| 2963 |
*
|
| 2964 |
* output parameters
|
| 2965 |
*
|
| 2966 |
* no return value
|
| 2967 |
*/
|
| 2968 |
void dwt_setsnoozetime(uint8 snooze_time)
|
| 2969 |
{
|
| 2970 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_SNOZT_OFFSET, snooze_time); |
| 2971 |
} |
| 2972 |
|
| 2973 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 2974 |
* @fn dwt_rxenable()
|
| 2975 |
*
|
| 2976 |
* @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a
|
| 2977 |
* "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set.
|
| 2978 |
* The receiver will stay turned on, listening to any messages until
|
| 2979 |
* it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame).
|
| 2980 |
*
|
| 2981 |
* input parameters
|
| 2982 |
* @param mode - this can be one of the following allowed values:
|
| 2983 |
*
|
| 2984 |
* DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately
|
| 2985 |
* DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately
|
| 2986 |
* (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error
|
| 2987 |
* (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when
|
| 2988 |
* performing manual RX re-enabling in double buffering mode
|
| 2989 |
*
|
| 2990 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed)
|
| 2991 |
*/
|
| 2992 |
int dwt_rxenable(int mode) |
| 2993 |
{
|
| 2994 |
uint16 temp ; |
| 2995 |
uint8 temp1 ; |
| 2996 |
|
| 2997 |
if ((mode & DWT_NO_SYNC_PTRS) == 0) |
| 2998 |
{
|
| 2999 |
dwt_syncrxbufptrs(); |
| 3000 |
} |
| 3001 |
|
| 3002 |
temp = (uint16)SYS_CTRL_RXENAB ; |
| 3003 |
|
| 3004 |
if (mode & DWT_START_RX_DELAYED)
|
| 3005 |
{
|
| 3006 |
temp |= (uint16)SYS_CTRL_RXDLYE ; |
| 3007 |
} |
| 3008 |
|
| 3009 |
dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
| 3010 |
|
| 3011 |
if (mode & DWT_START_RX_DELAYED) // check for errors |
| 3012 |
{
|
| 3013 |
temp1 = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
| 3014 |
if ((temp1 & (SYS_STATUS_HPDWARN >> 24)) != 0) // if delay has passed do immediate RX on unless DWT_IDLE_ON_DLY_ERR is true |
| 3015 |
{
|
| 3016 |
dwt_forcetrxoff(); // turn the delayed receive off
|
| 3017 |
|
| 3018 |
if((mode & DWT_IDLE_ON_DLY_ERR) == 0) // if DWT_IDLE_ON_DLY_ERR not set then re-enable receiver |
| 3019 |
{
|
| 3020 |
dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_RXENAB); |
| 3021 |
} |
| 3022 |
return DWT_ERROR; // return warning indication |
| 3023 |
} |
| 3024 |
} |
| 3025 |
|
| 3026 |
return DWT_SUCCESS;
|
| 3027 |
} // end dwt_rxenable()
|
| 3028 |
|
| 3029 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3030 |
* @fn dwt_setrxtimeout()
|
| 3031 |
*
|
| 3032 |
* @brief This call enables RX timeout (SY_STAT_RFTO event)
|
| 3033 |
*
|
| 3034 |
* input parameters
|
| 3035 |
* @param time - how long the receiver remains on from the RX enable command
|
| 3036 |
* The time parameter used here is in 1.0256 us (512/499.2MHz) units
|
| 3037 |
* If set to 0 the timeout is disabled.
|
| 3038 |
*
|
| 3039 |
* output parameters
|
| 3040 |
*
|
| 3041 |
* no return value
|
| 3042 |
*/
|
| 3043 |
void dwt_setrxtimeout(uint16 time)
|
| 3044 |
{
|
| 3045 |
uint8 temp ; |
| 3046 |
|
| 3047 |
temp = dwt_read8bitoffsetreg(SYS_CFG_ID, 3); // Read at offset 3 to get the upper byte only |
| 3048 |
|
| 3049 |
if(time > 0) |
| 3050 |
{
|
| 3051 |
dwt_write16bitoffsetreg(RX_FWTO_ID, RX_FWTO_OFFSET, time) ; |
| 3052 |
|
| 3053 |
temp |= (uint8)(SYS_CFG_RXWTOE>>24); // Shift RXWTOE mask as we read the upper byte only |
| 3054 |
// OR in 32bit value (1 bit set), I know this is in high byte.
|
| 3055 |
pdw1000local->sysCFGreg |= SYS_CFG_RXWTOE; |
| 3056 |
|
| 3057 |
dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
| 3058 |
} |
| 3059 |
else
|
| 3060 |
{
|
| 3061 |
temp &= ~((uint8)(SYS_CFG_RXWTOE>>24)); // Shift RXWTOE mask as we read the upper byte only |
| 3062 |
// AND in inverted 32bit value (1 bit clear), I know this is in high byte.
|
| 3063 |
pdw1000local->sysCFGreg &= ~(SYS_CFG_RXWTOE); |
| 3064 |
|
| 3065 |
dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
| 3066 |
} |
| 3067 |
|
| 3068 |
} // end dwt_setrxtimeout()
|
| 3069 |
|
| 3070 |
|
| 3071 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3072 |
* @fn dwt_setpreambledetecttimeout()
|
| 3073 |
*
|
| 3074 |
* @brief This call enables preamble timeout (SY_STAT_RXPTO event)
|
| 3075 |
*
|
| 3076 |
* input parameters
|
| 3077 |
* @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
| 3078 |
* size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size).
|
| 3079 |
*
|
| 3080 |
* Note: value of 0 disables the preamble timeout
|
| 3081 |
* output parameters
|
| 3082 |
*
|
| 3083 |
* no return value
|
| 3084 |
*/
|
| 3085 |
void dwt_setpreambledetecttimeout(uint16 timeout)
|
| 3086 |
{
|
| 3087 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_PRETOC_OFFSET, timeout); |
| 3088 |
} |
| 3089 |
|
| 3090 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3091 |
* @fn void dwt_setinterrupt()
|
| 3092 |
*
|
| 3093 |
* @brief This function enables the specified events to trigger an interrupt.
|
| 3094 |
* The following events can be enabled:
|
| 3095 |
* DWT_INT_TFRS 0x00000080 // frame sent
|
| 3096 |
* DWT_INT_RFCG 0x00004000 // frame received with good CRC
|
| 3097 |
* DWT_INT_RPHE 0x00001000 // receiver PHY header error
|
| 3098 |
* DWT_INT_RFCE 0x00008000 // receiver CRC error
|
| 3099 |
* DWT_INT_RFSL 0x00010000 // receiver sync loss error
|
| 3100 |
* DWT_INT_RFTO 0x00020000 // frame wait timeout
|
| 3101 |
* DWT_INT_RXPTO 0x00200000 // preamble detect timeout
|
| 3102 |
* DWT_INT_SFDT 0x04000000 // SFD timeout
|
| 3103 |
* DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration)
|
| 3104 |
*
|
| 3105 |
*
|
| 3106 |
* input parameters:
|
| 3107 |
* @param bitmask - sets the events which will generate interrupt
|
| 3108 |
* @param operation - if set to 1 the interrupts (only the ones selected in the bitmask) are enabled else they are cleared
|
| 3109 |
* - if set to 2 the interrupts in the bitmask are forced to selected state - i.e. the mask is written to the register directly.
|
| 3110 |
*
|
| 3111 |
* output parameters
|
| 3112 |
*
|
| 3113 |
* no return value
|
| 3114 |
*/
|
| 3115 |
void dwt_setinterrupt(uint32 bitmask, uint8 operation)
|
| 3116 |
{
|
| 3117 |
decaIrqStatus_t stat ; |
| 3118 |
uint32 mask ; |
| 3119 |
|
| 3120 |
// Need to beware of interrupts occurring in the middle of following read modify write cycle
|
| 3121 |
stat = decamutexon() ; |
| 3122 |
|
| 3123 |
if(operation == 2) |
| 3124 |
{
|
| 3125 |
dwt_write32bitreg(SYS_MASK_ID, bitmask) ; // New value
|
| 3126 |
} |
| 3127 |
else
|
| 3128 |
{
|
| 3129 |
mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read register
|
| 3130 |
if(operation == 1) |
| 3131 |
{
|
| 3132 |
mask |= bitmask ; |
| 3133 |
} |
| 3134 |
else
|
| 3135 |
{
|
| 3136 |
mask &= ~bitmask ; // Clear the bit
|
| 3137 |
} |
| 3138 |
dwt_write32bitreg(SYS_MASK_ID, mask) ; // New value
|
| 3139 |
} |
| 3140 |
|
| 3141 |
decamutexoff(stat) ; |
| 3142 |
} |
| 3143 |
|
| 3144 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3145 |
* @fn dwt_configeventcounters()
|
| 3146 |
*
|
| 3147 |
* @brief This is used to enable/disable the event counter in the IC
|
| 3148 |
*
|
| 3149 |
* input parameters
|
| 3150 |
* @param - enable - 1 enables (and reset), 0 disables the event counters
|
| 3151 |
* output parameters
|
| 3152 |
*
|
| 3153 |
* no return value
|
| 3154 |
*/
|
| 3155 |
void dwt_configeventcounters(int enable) |
| 3156 |
{
|
| 3157 |
// Need to clear and disable, can't just clear
|
| 3158 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_CLR)); |
| 3159 |
|
| 3160 |
if(enable)
|
| 3161 |
{
|
| 3162 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_EN)); // Enable
|
| 3163 |
} |
| 3164 |
} |
| 3165 |
|
| 3166 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3167 |
* @fn dwt_readeventcounters()
|
| 3168 |
*
|
| 3169 |
* @brief This is used to read the event counters in the IC
|
| 3170 |
*
|
| 3171 |
* input parameters
|
| 3172 |
* @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data
|
| 3173 |
*
|
| 3174 |
* output parameters
|
| 3175 |
*
|
| 3176 |
* no return value
|
| 3177 |
*/
|
| 3178 |
void dwt_readeventcounters(dwt_deviceentcnts_t *counters)
|
| 3179 |
{
|
| 3180 |
uint32 temp; |
| 3181 |
|
| 3182 |
temp= dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_PHE_OFFSET); // Read sync loss (31-16), PHE (15-0)
|
| 3183 |
counters->PHE = temp & 0xFFF;
|
| 3184 |
counters->RSL = (temp >> 16) & 0xFFF; |
| 3185 |
|
| 3186 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FCG_OFFSET); // Read CRC bad (31-16), CRC good (15-0)
|
| 3187 |
counters->CRCG = temp & 0xFFF;
|
| 3188 |
counters->CRCB = (temp >> 16) & 0xFFF; |
| 3189 |
|
| 3190 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FFR_OFFSET); // Overruns (31-16), address errors (15-0)
|
| 3191 |
counters->ARFE = temp & 0xFFF;
|
| 3192 |
counters->OVER = (temp >> 16) & 0xFFF; |
| 3193 |
|
| 3194 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_STO_OFFSET); // Read PTO (31-16), SFDTO (15-0)
|
| 3195 |
counters->PTO = (temp >> 16) & 0xFFF; |
| 3196 |
counters->SFDTO = temp & 0xFFF;
|
| 3197 |
|
| 3198 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FWTO_OFFSET); // Read RX TO (31-16), TXFRAME (15-0)
|
| 3199 |
counters->TXF = (temp >> 16) & 0xFFF; |
| 3200 |
counters->RTO = temp & 0xFFF;
|
| 3201 |
|
| 3202 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_HPW_OFFSET); // Read half period warning events
|
| 3203 |
counters->HPW = temp & 0xFFF;
|
| 3204 |
counters->TXW = (temp >> 16) & 0xFFF; // Power-up warning events |
| 3205 |
|
| 3206 |
} |
| 3207 |
|
| 3208 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3209 |
* @fn dwt_rxreset()
|
| 3210 |
*
|
| 3211 |
* @brief this function resets the receiver of the DW1000
|
| 3212 |
*
|
| 3213 |
* input parameters:
|
| 3214 |
*
|
| 3215 |
* output parameters
|
| 3216 |
*
|
| 3217 |
* no return value
|
| 3218 |
*/
|
| 3219 |
void dwt_rxreset(void) |
| 3220 |
{
|
| 3221 |
// Set RX reset
|
| 3222 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_RX); |
| 3223 |
|
| 3224 |
// Clear RX reset
|
| 3225 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
| 3226 |
} |
| 3227 |
|
| 3228 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3229 |
* @fn dwt_softreset()
|
| 3230 |
*
|
| 3231 |
* @brief this function resets the DW1000
|
| 3232 |
*
|
| 3233 |
* input parameters:
|
| 3234 |
*
|
| 3235 |
* output parameters
|
| 3236 |
*
|
| 3237 |
* no return value
|
| 3238 |
*/
|
| 3239 |
void dwt_softreset(void) |
| 3240 |
{
|
| 3241 |
_dwt_disablesequencing(); |
| 3242 |
|
| 3243 |
// Clear any AON auto download bits (as reset will trigger AON download)
|
| 3244 |
dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, 0x00);
|
| 3245 |
// Clear the wake-up configuration
|
| 3246 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00);
|
| 3247 |
// Upload the new configuration
|
| 3248 |
_dwt_aonarrayupload(); |
| 3249 |
|
| 3250 |
// Reset HIF, TX, RX and PMSC (set the reset bits)
|
| 3251 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_ALL); |
| 3252 |
|
| 3253 |
// DW1000 needs a 10us sleep to let clk PLL lock after reset - the PLL will automatically lock after the reset
|
| 3254 |
// Could also have polled the PLL lock flag, but then the SPI needs to be < 3MHz !! So a simple delay is easier
|
| 3255 |
deca_sleep(1);
|
| 3256 |
|
| 3257 |
// Clear the reset bits
|
| 3258 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
| 3259 |
|
| 3260 |
pdw1000local->wait4resp = 0;
|
| 3261 |
} |
| 3262 |
|
| 3263 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3264 |
* @fn dwt_setxtaltrim()
|
| 3265 |
*
|
| 3266 |
* @brief This is used to adjust the crystal frequency
|
| 3267 |
*
|
| 3268 |
* input parameters:
|
| 3269 |
* @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step)
|
| 3270 |
*
|
| 3271 |
* output parameters
|
| 3272 |
*
|
| 3273 |
* no return value
|
| 3274 |
*/
|
| 3275 |
void dwt_setxtaltrim(uint8 value)
|
| 3276 |
{
|
| 3277 |
// The 3 MSb in this 8-bit register must be kept to 0b011 to avoid any malfunction.
|
| 3278 |
uint8 reg_val = (3 << 5) | (value & FS_XTALT_MASK); |
| 3279 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET, reg_val); |
| 3280 |
} |
| 3281 |
|
| 3282 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3283 |
* @fn dwt_getxtaltrim()
|
| 3284 |
*
|
| 3285 |
* @brief This function returns current value of XTAL trim. If this is called after dwt_initalise it will return the OTP value
|
| 3286 |
* if OTP value is non-zero or FS_XTALT_MIDRANGE if OTP value is zero (not programmed).
|
| 3287 |
*
|
| 3288 |
* input parameters
|
| 3289 |
*
|
| 3290 |
* output parameters
|
| 3291 |
*
|
| 3292 |
* returns the current XTAL trim value
|
| 3293 |
*/
|
| 3294 |
uint8 dwt_getxtaltrim(void)
|
| 3295 |
{
|
| 3296 |
return (dwt_read8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET) & FS_XTALT_MASK);
|
| 3297 |
} |
| 3298 |
|
| 3299 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3300 |
* @fn dwt_configcwmode()
|
| 3301 |
*
|
| 3302 |
* @brief this function sets the DW1000 to transmit cw signal at specific channel frequency
|
| 3303 |
*
|
| 3304 |
* input parameters:
|
| 3305 |
* @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7)
|
| 3306 |
*
|
| 3307 |
* output parameters
|
| 3308 |
*
|
| 3309 |
* no return value
|
| 3310 |
*/
|
| 3311 |
void dwt_configcwmode(uint8 chan)
|
| 3312 |
{
|
| 3313 |
#ifdef DWT_API_ERROR_CHECK
|
| 3314 |
assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
| 3315 |
#endif
|
| 3316 |
|
| 3317 |
//
|
| 3318 |
// Disable TX/RX RF block sequencing (needed for cw frame mode)
|
| 3319 |
//
|
| 3320 |
_dwt_disablesequencing(); |
| 3321 |
|
| 3322 |
// Config RF pll (for a given channel)
|
| 3323 |
// Configure PLL2/RF PLL block CFG/TUNE
|
| 3324 |
dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
| 3325 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
| 3326 |
// PLL wont be enabled until a TX/RX enable is issued later on
|
| 3327 |
// Configure RF TX blocks (for specified channel and prf)
|
| 3328 |
// Config RF TX control
|
| 3329 |
dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
| 3330 |
|
| 3331 |
//
|
| 3332 |
// Enable RF PLL
|
| 3333 |
//
|
| 3334 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
| 3335 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
| 3336 |
|
| 3337 |
//
|
| 3338 |
// Configure TX clocks
|
| 3339 |
//
|
| 3340 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, 0x22);
|
| 3341 |
dwt_write8bitoffsetreg(PMSC_ID, 0x1, 0x07); |
| 3342 |
|
| 3343 |
// Disable fine grain TX sequencing
|
| 3344 |
dwt_setfinegraintxseq(0);
|
| 3345 |
|
| 3346 |
// Configure CW mode
|
| 3347 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGTEST_OFFSET, TC_PGTEST_CW); |
| 3348 |
} |
| 3349 |
|
| 3350 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3351 |
* @fn dwt_configcontinuousframemode()
|
| 3352 |
*
|
| 3353 |
* @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing.
|
| 3354 |
*
|
| 3355 |
* input parameters:
|
| 3356 |
* @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions.
|
| 3357 |
* The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)).
|
| 3358 |
*
|
| 3359 |
* output parameters
|
| 3360 |
*
|
| 3361 |
* no return value
|
| 3362 |
*/
|
| 3363 |
void dwt_configcontinuousframemode(uint32 framerepetitionrate)
|
| 3364 |
{
|
| 3365 |
//
|
| 3366 |
// Disable TX/RX RF block sequencing (needed for continuous frame mode)
|
| 3367 |
//
|
| 3368 |
_dwt_disablesequencing(); |
| 3369 |
|
| 3370 |
//
|
| 3371 |
// Enable RF PLL and TX blocks
|
| 3372 |
//
|
| 3373 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
| 3374 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
| 3375 |
|
| 3376 |
//
|
| 3377 |
// Configure TX clocks
|
| 3378 |
//
|
| 3379 |
_dwt_enableclocks(FORCE_SYS_PLL); |
| 3380 |
_dwt_enableclocks(FORCE_TX_PLL); |
| 3381 |
|
| 3382 |
// Set the frame repetition rate
|
| 3383 |
if(framerepetitionrate < 4) |
| 3384 |
{
|
| 3385 |
framerepetitionrate = 4;
|
| 3386 |
} |
| 3387 |
dwt_write32bitreg(DX_TIME_ID, framerepetitionrate); |
| 3388 |
|
| 3389 |
//
|
| 3390 |
// Configure continuous frame TX
|
| 3391 |
//
|
| 3392 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, DIAG_TMC_OFFSET, (uint8)(DIAG_TMC_TX_PSTM)); // Turn the tx power spectrum test mode - continuous sending of frames
|
| 3393 |
} |
| 3394 |
|
| 3395 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3396 |
* @fn dwt_readtempvbat()
|
| 3397 |
*
|
| 3398 |
* @brief this function reads the raw battery voltage and temperature values of the DW IC.
|
| 3399 |
* The values read here will be the current values sampled by DW IC AtoD converters.
|
| 3400 |
*
|
| 3401 |
* NB: To correctly read the temperature this read should be done with xtal clock
|
| 3402 |
* however that means that the receiver will be switched off, if receiver needs to be on then
|
| 3403 |
* the timer is used to make sure the value is stable before reading
|
| 3404 |
*
|
| 3405 |
* input parameters:
|
| 3406 |
* @param fastSPI - set to 1 if SPI rate > than 3MHz is used
|
| 3407 |
*
|
| 3408 |
* output parameters
|
| 3409 |
*
|
| 3410 |
* returns (temp_raw<<8)|(vbat_raw)
|
| 3411 |
*/
|
| 3412 |
uint16 dwt_readtempvbat(uint8 fastSPI) |
| 3413 |
{
|
| 3414 |
uint8 wr_buf[2];
|
| 3415 |
uint8 vbat_raw; |
| 3416 |
uint8 temp_raw; |
| 3417 |
|
| 3418 |
// These writes should be single writes and in sequence
|
| 3419 |
wr_buf[0] = 0x80; // Enable TLD Bias |
| 3420 |
dwt_writetodevice(RF_CONF_ID,0x11,1,wr_buf); |
| 3421 |
|
| 3422 |
wr_buf[0] = 0x0A; // Enable TLD Bias and ADC Bias |
| 3423 |
dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); |
| 3424 |
|
| 3425 |
wr_buf[0] = 0x0f; // Enable Outputs (only after Biases are up and running) |
| 3426 |
dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); // |
| 3427 |
|
| 3428 |
if(fastSPI == 1) |
| 3429 |
{
|
| 3430 |
// Reading All SAR inputs
|
| 3431 |
wr_buf[0] = 0x00; |
| 3432 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
| 3433 |
wr_buf[0] = 0x01; // Set SAR enable |
| 3434 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
| 3435 |
|
| 3436 |
deca_sleep(1); // If using PLL clocks(and fast SPI rate) then this sleep is needed |
| 3437 |
// Read voltage and temperature.
|
| 3438 |
dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
| 3439 |
} |
| 3440 |
else //change to a slow clock |
| 3441 |
{
|
| 3442 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read are reliable
|
| 3443 |
// Reading All SAR inputs
|
| 3444 |
wr_buf[0] = 0x00; |
| 3445 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
| 3446 |
wr_buf[0] = 0x01; // Set SAR enable |
| 3447 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
| 3448 |
|
| 3449 |
// Read voltage and temperature.
|
| 3450 |
dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
| 3451 |
// Default clocks (ENABLE_ALL_SEQ)
|
| 3452 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
| 3453 |
} |
| 3454 |
|
| 3455 |
vbat_raw = wr_buf[0];
|
| 3456 |
temp_raw = wr_buf[1];
|
| 3457 |
|
| 3458 |
wr_buf[0] = 0x00; // Clear SAR enable |
| 3459 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
| 3460 |
|
| 3461 |
return (((uint16)temp_raw<<8)|(vbat_raw)); |
| 3462 |
} |
| 3463 |
|
| 3464 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3465 |
* @fn dwt_convertrawtemperature()
|
| 3466 |
*
|
| 3467 |
* @brief this function takes in a raw temperature value and applies the conversion factor
|
| 3468 |
* to give true temperature. The dwt_initialise needs to be called before call to this to
|
| 3469 |
* ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
| 3470 |
*
|
| 3471 |
* input parameters:
|
| 3472 |
* @param raw_temp - this is the 8-bit raw temperature value as read by dwt_readtempvbat
|
| 3473 |
*
|
| 3474 |
* output parameters:
|
| 3475 |
*
|
| 3476 |
* returns: temperature sensor value in degrees
|
| 3477 |
*/
|
| 3478 |
float dwt_convertrawtemperature(uint8 raw_temp)
|
| 3479 |
{
|
| 3480 |
float realtemp;
|
| 3481 |
#ifdef DWT_API_ERROR_CHECK
|
| 3482 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
| 3483 |
#endif
|
| 3484 |
// the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
| 3485 |
realtemp = ((raw_temp - pdw1000local->tempP) * SAR_TEMP_TO_CELCIUS_CONV) + 23 ;
|
| 3486 |
|
| 3487 |
return realtemp;
|
| 3488 |
} |
| 3489 |
|
| 3490 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3491 |
* @fn dwt_convertdegtemptoraw()
|
| 3492 |
*
|
| 3493 |
* @brief this function takes in an externally measured temperature in 10ths of degrees Celcius
|
| 3494 |
* and applies the conversion factor to give a value in IC temperature units, as produced by the SAR A/D.
|
| 3495 |
* The dwt_initialise needs to be called before call to this to ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
| 3496 |
*
|
| 3497 |
* input parameters:
|
| 3498 |
* @param externaltemp - this is the an externally measured temperature in 10ths of degrees Celcius to convert
|
| 3499 |
*
|
| 3500 |
* output parameters:
|
| 3501 |
*
|
| 3502 |
* returns: temperature sensor value in DW IC temperature units (1.14?C steps)
|
| 3503 |
*/
|
| 3504 |
uint8 dwt_convertdegtemptoraw(int16 externaltemp) |
| 3505 |
{
|
| 3506 |
int32 raw_temp; |
| 3507 |
#ifdef DWT_API_ERROR_CHECK
|
| 3508 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
| 3509 |
assert((externaltemp > -800) && (externaltemp < 1500)) |
| 3510 |
#endif
|
| 3511 |
// the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
| 3512 |
raw_temp = ((externaltemp - 230 + 5) * DCELCIUS_TO_SAR_TEMP_CONV) ; //+5 for better rounding |
| 3513 |
|
| 3514 |
if(raw_temp < 0) //negative |
| 3515 |
{
|
| 3516 |
raw_temp = (-raw_temp >> 8) ;
|
| 3517 |
raw_temp = -raw_temp ; |
| 3518 |
} |
| 3519 |
else
|
| 3520 |
raw_temp = raw_temp >> 8 ;
|
| 3521 |
|
| 3522 |
return (uint8) (raw_temp + pdw1000local->tempP);
|
| 3523 |
} |
| 3524 |
|
| 3525 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3526 |
* @fn dwt_convertrawvoltage()
|
| 3527 |
*
|
| 3528 |
* @brief this function takes in a raw voltage value and applies the conversion factor
|
| 3529 |
* to give true voltage. The dwt_initialise needs to be called before call to this to
|
| 3530 |
* ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP
|
| 3531 |
*
|
| 3532 |
* input parameters:
|
| 3533 |
* @param raw_voltage - this is the 8-bit raw voltage value as read by dwt_readtempvbat
|
| 3534 |
*
|
| 3535 |
* output parameters:
|
| 3536 |
*
|
| 3537 |
* returns: voltage sensor value in volts
|
| 3538 |
*/
|
| 3539 |
float dwt_convertrawvoltage(uint8 raw_voltage)
|
| 3540 |
{
|
| 3541 |
float realvolt;
|
| 3542 |
|
| 3543 |
#ifdef DWT_API_ERROR_CHECK
|
| 3544 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
| 3545 |
#endif
|
| 3546 |
// the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
| 3547 |
realvolt = ((float)(raw_voltage - pdw1000local->vBatP) * SAR_VBAT_TO_VOLT_CONV) + 3.3 ; |
| 3548 |
|
| 3549 |
return realvolt;
|
| 3550 |
} |
| 3551 |
|
| 3552 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3553 |
* @fn dwt_convertvoltstoraw()
|
| 3554 |
*
|
| 3555 |
* @brief this function takes in a true voltage in millivolts and applies the conversion factor to
|
| 3556 |
* give a raw DW IC value. The dwt_initialise needs to be called before call to this to
|
| 3557 |
* ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP.
|
| 3558 |
*
|
| 3559 |
* input parameters:
|
| 3560 |
* @param realvolt - this is a true voltage in millivolts to convert
|
| 3561 |
*
|
| 3562 |
* output parameters:
|
| 3563 |
*
|
| 3564 |
* returns: voltage sensor value in DW IC voltage units
|
| 3565 |
*/
|
| 3566 |
uint8 dwt_convertvoltstoraw(int32 externalmvolt) |
| 3567 |
{
|
| 3568 |
uint32 raw_voltage; |
| 3569 |
#ifdef DWT_API_ERROR_CHECK
|
| 3570 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
| 3571 |
#endif
|
| 3572 |
// the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
| 3573 |
raw_voltage = ((externalmvolt - 3300) * MVOLT_TO_SAR_VBAT_CONV) + pdw1000local->vBatP ;
|
| 3574 |
|
| 3575 |
return (uint8) raw_voltage;
|
| 3576 |
} |
| 3577 |
|
| 3578 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3579 |
* @fn dwt_readwakeuptemp()
|
| 3580 |
*
|
| 3581 |
* @brief this function reads the temperature of the DW1000 that was sampled
|
| 3582 |
* on waking from Sleep/Deepsleep. They are not current values, but read on last
|
| 3583 |
* wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
| 3584 |
*
|
| 3585 |
* input parameters:
|
| 3586 |
*
|
| 3587 |
* output parameters:
|
| 3588 |
*
|
| 3589 |
* returns: 8-bit raw temperature sensor value
|
| 3590 |
*/
|
| 3591 |
uint8 dwt_readwakeuptemp(void)
|
| 3592 |
{
|
| 3593 |
return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LTEMP_OFFSET);
|
| 3594 |
} |
| 3595 |
|
| 3596 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3597 |
* @fn dwt_readwakeupvbat()
|
| 3598 |
*
|
| 3599 |
* @brief this function reads the battery voltage of the DW1000 that was sampled
|
| 3600 |
* on waking from Sleep/Deepsleep. They are not current values, but read on last
|
| 3601 |
* wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
| 3602 |
*
|
| 3603 |
* input parameters:
|
| 3604 |
*
|
| 3605 |
* output parameters:
|
| 3606 |
*
|
| 3607 |
* returns: 8-bit raw battery voltage sensor value
|
| 3608 |
*/
|
| 3609 |
uint8 dwt_readwakeupvbat(void)
|
| 3610 |
{
|
| 3611 |
return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET);
|
| 3612 |
} |
| 3613 |
|
| 3614 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3615 |
* @fn dwt_calcbandwidthtempadj()
|
| 3616 |
*
|
| 3617 |
* @brief this function determines the corrected bandwidth setting (PG_DELAY register setting)
|
| 3618 |
* of the DW1000 which changes over temperature.
|
| 3619 |
*
|
| 3620 |
* NOTE 1: SPI Frequency must be < 3MHz.
|
| 3621 |
* NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
| 3622 |
*
|
| 3623 |
* input parameters:
|
| 3624 |
* @param target_count - uint16 - the PG count target to reach in order to correct the bandwidth
|
| 3625 |
*
|
| 3626 |
* output parameters:
|
| 3627 |
*
|
| 3628 |
* returns: (uint32) The setting to be programmed into the PG_DELAY value
|
| 3629 |
*/
|
| 3630 |
uint32 dwt_calcbandwidthtempadj(uint16 target_count) |
| 3631 |
{
|
| 3632 |
int i;
|
| 3633 |
uint8 bit_field, curr_bw; |
| 3634 |
int32 delta_count = 0;
|
| 3635 |
uint32 best_bw = 0;
|
| 3636 |
uint16 raw_count = 0;
|
| 3637 |
int32 delta_lowest; |
| 3638 |
|
| 3639 |
// Used to store the current values of the registers so that they can be restored after
|
| 3640 |
uint8 old_pmsc_ctrl0; |
| 3641 |
uint16 old_pmsc_ctrl1; |
| 3642 |
uint32 old_rf_conf_txpow_mask; |
| 3643 |
|
| 3644 |
// Record the current values of these registers, to restore later
|
| 3645 |
old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
| 3646 |
old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
| 3647 |
old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
| 3648 |
|
| 3649 |
// Set clock to XTAL
|
| 3650 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
| 3651 |
|
| 3652 |
// Disable sequencing
|
| 3653 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
| 3654 |
|
| 3655 |
// Turn on CLK PLL, Mix Bias and PG
|
| 3656 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
| 3657 |
|
| 3658 |
// Set sys and TX clock to PLL
|
| 3659 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
| 3660 |
|
| 3661 |
// Set the MSB high for first guess
|
| 3662 |
curr_bw = 0x80;
|
| 3663 |
// Set starting bit
|
| 3664 |
bit_field = 0x80;
|
| 3665 |
// Initial lowest delta is the maximum difference that we should allow the count value to be from the target.
|
| 3666 |
// If the algorithm is successful, it will be overwritten by a smaller value where the count value is closer
|
| 3667 |
// to the target
|
| 3668 |
delta_lowest = 300;
|
| 3669 |
|
| 3670 |
for (i = 0; i < 7; i++) |
| 3671 |
{
|
| 3672 |
// start with 0xc0 and test.
|
| 3673 |
bit_field = bit_field >> 1;
|
| 3674 |
curr_bw = curr_bw | bit_field; |
| 3675 |
|
| 3676 |
// Write bw setting to PG_DELAY register
|
| 3677 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, curr_bw); |
| 3678 |
|
| 3679 |
// Set cal direction and time
|
| 3680 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
| 3681 |
|
| 3682 |
// Start cal
|
| 3683 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
| 3684 |
// Allow cal to complete
|
| 3685 |
deca_sleep(1);
|
| 3686 |
|
| 3687 |
// Read count value from the PG cal block
|
| 3688 |
raw_count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
| 3689 |
|
| 3690 |
// lets keep track of the closest value to the target in case we overshoot
|
| 3691 |
delta_count = abs((int)raw_count - (int)target_count); |
| 3692 |
if (delta_count < delta_lowest)
|
| 3693 |
{
|
| 3694 |
delta_lowest = delta_count; |
| 3695 |
best_bw = curr_bw; |
| 3696 |
} |
| 3697 |
|
| 3698 |
// Test the count results
|
| 3699 |
if (raw_count > target_count)
|
| 3700 |
// Count was lower, BW was lower so increase PG DELAY
|
| 3701 |
curr_bw = curr_bw | bit_field; |
| 3702 |
else
|
| 3703 |
// Count was higher
|
| 3704 |
curr_bw = curr_bw & (~(bit_field)); |
| 3705 |
} |
| 3706 |
|
| 3707 |
// Restore old register values
|
| 3708 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
| 3709 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
| 3710 |
dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
| 3711 |
|
| 3712 |
// Returns the best PG_DELAY setting
|
| 3713 |
return best_bw;
|
| 3714 |
} |
| 3715 |
|
| 3716 |
|
| 3717 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3718 |
* @fn _dwt_computetxpowersetting()
|
| 3719 |
*
|
| 3720 |
* @brief this function calculates the appropriate change to the TX_POWER register to compensate
|
| 3721 |
* the TX power output at different temperatures.
|
| 3722 |
*
|
| 3723 |
* input parameters:
|
| 3724 |
* @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
| 3725 |
* @param power_adj - uint32 - the adjustment in power level to be made, in 0.5dB steps
|
| 3726 |
*
|
| 3727 |
* output parameters:
|
| 3728 |
*
|
| 3729 |
* returns: (uint32) The setting to be programmed into the TX_POWER register
|
| 3730 |
*/
|
| 3731 |
uint32 _dwt_computetxpowersetting(uint32 ref_powerreg, int32 power_adj) |
| 3732 |
{
|
| 3733 |
int8 da_attn_change, mixer_gain_change; |
| 3734 |
uint8 current_da_attn, current_mixer_gain; |
| 3735 |
uint8 new_da_attn, new_mixer_gain; |
| 3736 |
uint32 new_regval = 0;
|
| 3737 |
int i;
|
| 3738 |
|
| 3739 |
for(i = 0; i < 4; i++) |
| 3740 |
{
|
| 3741 |
da_attn_change = 0;
|
| 3742 |
mixer_gain_change = power_adj; |
| 3743 |
current_da_attn = ((ref_powerreg >> (i*8)) & 0xE0) >> 5; |
| 3744 |
current_mixer_gain = (ref_powerreg >> (i*8)) & 0x1F; |
| 3745 |
|
| 3746 |
// Mixer gain gives best performance between gain value of 4 and 20
|
| 3747 |
while((current_mixer_gain + mixer_gain_change < 4) || |
| 3748 |
(current_mixer_gain + mixer_gain_change > 20))
|
| 3749 |
{
|
| 3750 |
// If mixer gain goes outside bounds, adjust the DA attenuation to compensate
|
| 3751 |
if(current_mixer_gain + mixer_gain_change > 20) |
| 3752 |
{
|
| 3753 |
da_attn_change -= 1;
|
| 3754 |
|
| 3755 |
if(da_attn_change == 0) //DA attenuation has reached the max value |
| 3756 |
{
|
| 3757 |
da_attn_change = 1; //restore the value and exit the loop - DA is at max allowed |
| 3758 |
break;
|
| 3759 |
} |
| 3760 |
|
| 3761 |
mixer_gain_change -= (int8) (MIX_DA_FACTOR); |
| 3762 |
} |
| 3763 |
else if(current_mixer_gain + mixer_gain_change < 4) |
| 3764 |
{
|
| 3765 |
da_attn_change += 1;
|
| 3766 |
|
| 3767 |
if(da_attn_change == 0x8) //DA attenuation has reached the min value |
| 3768 |
{
|
| 3769 |
da_attn_change = 7; //restore the value and exit the loop - DA is at min allowed |
| 3770 |
break;
|
| 3771 |
} |
| 3772 |
|
| 3773 |
mixer_gain_change += (int8) (MIX_DA_FACTOR); |
| 3774 |
} |
| 3775 |
} |
| 3776 |
|
| 3777 |
new_da_attn = (current_da_attn + da_attn_change) & 0x7;
|
| 3778 |
new_mixer_gain = (current_mixer_gain + mixer_gain_change) & 0x1F;
|
| 3779 |
|
| 3780 |
new_regval |= ((uint32) ((new_da_attn << 5) | new_mixer_gain)) << (i * 8); |
| 3781 |
} |
| 3782 |
|
| 3783 |
return (uint32)new_regval;
|
| 3784 |
} |
| 3785 |
|
| 3786 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3787 |
* @fn dwt_calcpowertempadj()
|
| 3788 |
*
|
| 3789 |
* @brief this function determines the corrected power setting (TX_POWER setting) for the
|
| 3790 |
* DW1000 which changes over temperature.
|
| 3791 |
*
|
| 3792 |
* Note: only ch2 or ch5 are supported, if other channel is used - the COMP factor should be calculated and adjusted
|
| 3793 |
*
|
| 3794 |
* input parameters:
|
| 3795 |
* @param channel - uint8 - the channel at which compensation of power level will be applied: 2 or 5
|
| 3796 |
* @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
| 3797 |
* @param delta_temp - int - the difference between current ambient temperature (raw value units)
|
| 3798 |
* and the temperature at which reference measurements were made (raw value units)
|
| 3799 |
|
| 3800 |
* output parameters: None
|
| 3801 |
*
|
| 3802 |
* returns: (uint32) The corrected TX_POWER register value
|
| 3803 |
*/
|
| 3804 |
uint32 dwt_calcpowertempadj(uint8 channel, uint32 ref_powerreg, int delta_temp)
|
| 3805 |
{
|
| 3806 |
int8 delta_power; |
| 3807 |
int negative = 0; |
| 3808 |
|
| 3809 |
if(delta_temp < 0) |
| 3810 |
{
|
| 3811 |
negative = 1;
|
| 3812 |
delta_temp = -delta_temp; //make (-)ve into (+)ve number
|
| 3813 |
} |
| 3814 |
|
| 3815 |
// Calculate the expected power differential at the current temperature
|
| 3816 |
if(channel == 5) |
| 3817 |
{
|
| 3818 |
delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH5) >> 12); //>>12 is same as /4096 |
| 3819 |
} |
| 3820 |
else if(channel == 2) |
| 3821 |
{
|
| 3822 |
delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH2) >> 12); //>>12 is same as /4096 |
| 3823 |
} |
| 3824 |
else
|
| 3825 |
delta_power = 0;
|
| 3826 |
|
| 3827 |
if(negative == 1) |
| 3828 |
{
|
| 3829 |
delta_power = -delta_power; //restore the sign
|
| 3830 |
} |
| 3831 |
|
| 3832 |
if(delta_power == 0) |
| 3833 |
return ref_powerreg ; //no change to power register |
| 3834 |
|
| 3835 |
// Adjust the TX_POWER register value
|
| 3836 |
return _dwt_computetxpowersetting(ref_powerreg, delta_power);
|
| 3837 |
} |
| 3838 |
|
| 3839 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 3840 |
* @fn dwt_calcpgcount()
|
| 3841 |
*
|
| 3842 |
* @brief this function calculates the value in the pulse generator counter register (PGC_STATUS) for a given PG_DELAY
|
| 3843 |
* This is used to take a reference measurement, and the value recorded as the reference is used to adjust the
|
| 3844 |
* bandwidth of the device when the temperature changes.
|
| 3845 |
*
|
| 3846 |
* NOTE 1: SPI Frequency must be < 3MHz.
|
| 3847 |
* NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
| 3848 |
*
|
| 3849 |
* input parameters:
|
| 3850 |
* @param pgdly - uint8 - the PG_DELAY to set (to control bandwidth), and to find the corresponding count value for
|
| 3851 |
* output parameters: None
|
| 3852 |
*
|
| 3853 |
* returns: (uint16) PGC_STATUS count value calculated from the provided PG_DELAY value - used as reference for later
|
| 3854 |
* bandwidth adjustments
|
| 3855 |
*/
|
| 3856 |
uint16 dwt_calcpgcount(uint8 pgdly) |
| 3857 |
{
|
| 3858 |
// Perform PG count read ten times and take an average to smooth out any noise
|
| 3859 |
const int NUM_SAMPLES = 10; |
| 3860 |
uint32 sum_count = 0;
|
| 3861 |
uint16 average_count = 0, count = 0; |
| 3862 |
int i = 0; |
| 3863 |
|
| 3864 |
// Used to store the current values of the registers so that they can be restored after
|
| 3865 |
uint8 old_pmsc_ctrl0; |
| 3866 |
uint16 old_pmsc_ctrl1; |
| 3867 |
uint32 old_rf_conf_txpow_mask; |
| 3868 |
|
| 3869 |
// Record the current values of these registers, to restore later
|
| 3870 |
old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
| 3871 |
old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
| 3872 |
old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
| 3873 |
|
| 3874 |
// Set clock to XTAL
|
| 3875 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
| 3876 |
// Disable sequencing
|
| 3877 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
| 3878 |
// Turn on CLK PLL, Mix Bias and PG
|
| 3879 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
| 3880 |
// Set sys and TX clock to PLL
|
| 3881 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
| 3882 |
|
| 3883 |
for(i = 0; i < NUM_SAMPLES; i++) { |
| 3884 |
// Write bw setting to PG_DELAY register
|
| 3885 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, pgdly); |
| 3886 |
|
| 3887 |
// Set cal direction and time
|
| 3888 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
| 3889 |
|
| 3890 |
// Start cal
|
| 3891 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
| 3892 |
|
| 3893 |
// Allow cal to complete - the TC_PGCCTRL_CALSTART bit will clear automatically
|
| 3894 |
deca_sleep(1);
|
| 3895 |
|
| 3896 |
// Read count value from the PG cal block
|
| 3897 |
count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
| 3898 |
|
| 3899 |
sum_count += count; |
| 3900 |
} |
| 3901 |
|
| 3902 |
// Restore old register values
|
| 3903 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
| 3904 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
| 3905 |
dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
| 3906 |
|
| 3907 |
average_count = (int)(sum_count / NUM_SAMPLES);
|
| 3908 |
return average_count;
|
| 3909 |
} |
| 3910 |
|
| 3911 |
|
| 3912 |
/* ===============================================================================================
|
| 3913 |
List of expected (known) device ID handled by this software
|
| 3914 |
===============================================================================================
|
| 3915 |
|
| 3916 |
0xDECA0130 // DW1000 - MP
|
| 3917 |
|
| 3918 |
===============================================================================================
|
| 3919 |
*/
|
| 3920 |
|