amiro-os / devices / PowerManagement / PowerManagement.cpp @ 3aee55de
History | View | Annotate | Download (7.458 KB)
| 1 | 58fe0e0b | Thomas Schöpping | #include "ch.hpp" |
|---|---|---|---|
| 2 | #include "hal.h" |
||
| 3 | #include "PowerManagement.h" |
||
| 4 | |||
| 5 | #include <amiro/proximity/vcnl4020.hpp> |
||
| 6 | #include <global.hpp> |
||
| 7 | |||
| 8 | #include <algorithm> |
||
| 9 | #include <chprintf.h> |
||
| 10 | |||
| 11 | using namespace chibios_rt; |
||
| 12 | using namespace amiro; |
||
| 13 | |||
| 14 | extern Global global;
|
||
| 15 | |||
| 16 | PowerManagement::PowerManagement(CANDriver *can) |
||
| 17 | : ControllerAreaNetworkTx(can, CAN::POWER_MANAGEMENT_ID), |
||
| 18 | ControllerAreaNetworkRx(can, CAN::POWER_MANAGEMENT_ID), |
||
| 19 | bc_counter(0)
|
||
| 20 | {
|
||
| 21 | this->powerStatus.charging_flags.value = 0; |
||
| 22 | } |
||
| 23 | |||
| 24 | msg_t PowerManagement::receiveMessage(CANRxFrame *frame) {
|
||
| 25 | int deviceId = this->decodeDeviceId(frame); |
||
| 26 | switch (deviceId) {
|
||
| 27 | |||
| 28 | case CAN::SHELL_REPLY_ID(CAN::POWER_MANAGEMENT_ID):
|
||
| 29 | if (frame->DLC > 0) { |
||
| 30 | sdWrite(&SD1, frame->data8, frame->DLC); |
||
| 31 | return RDY_OK;
|
||
| 32 | } |
||
| 33 | break;
|
||
| 34 | |||
| 35 | case CAN::SHELL_QUERY_ID(CAN::POWER_MANAGEMENT_ID):
|
||
| 36 | if (frame->DLC != 0) { |
||
| 37 | global.sercanmux1.convCan2Serial(frame->data8, frame->DLC); |
||
| 38 | return RDY_OK;
|
||
| 39 | } else {
|
||
| 40 | global.sercanmux1.rcvSwitchCmd(this->decodeBoardId(frame));
|
||
| 41 | return RDY_OK;
|
||
| 42 | } |
||
| 43 | break;
|
||
| 44 | |||
| 45 | case CAN::CALIBRATE_PROXIMITY_RING:
|
||
| 46 | // Dont care about the payload but start the calibration
|
||
| 47 | // TODO Care about the payload. Differ between:
|
||
| 48 | // 1: Do fresh calibration (Save values to memory and to temporary values)
|
||
| 49 | // 2: Remove temporary Calibration and get uncalibrated values
|
||
| 50 | // 3: Load calibration from memory
|
||
| 51 | this->calibrate();
|
||
| 52 | break;
|
||
| 53 | |||
| 54 | case CAN::ROBOT_ID:
|
||
| 55 | if (frame->DLC == 1) { |
||
| 56 | this->robotId = frame->data8[0]; |
||
| 57 | return RDY_OK;
|
||
| 58 | } |
||
| 59 | break;
|
||
| 60 | 8c99e03a | galberding | case CAN::REQUEST_CHARGING_OVER_PIN:
|
| 61 | if (frame->DLC == 1) { |
||
| 62 | // Error handling
|
||
| 63 | // TODO: Error Handling, for now just set the given value
|
||
| 64 | this->powerStatus.charging_flags.content.diwheeldrive_enable_power_path = frame->data8[0]; |
||
| 65 | return RDY_OK;
|
||
| 66 | } |
||
| 67 | break;
|
||
| 68 | 58fe0e0b | Thomas Schöpping | |
| 69 | default:
|
||
| 70 | break;
|
||
| 71 | } |
||
| 72 | |||
| 73 | return -1; |
||
| 74 | } |
||
| 75 | |||
| 76 | msg_t PowerManagement::updateSensorVal() {
|
||
| 77 | |||
| 78 | // update charger status
|
||
| 79 | 98e7c69b | galberding | // this->powerStatus.charging_flags.content.powermanagement_plugged_in = global.ltc4412.isPluggedIn();
|
| 80 | this->powerStatus.charging_flags.content.powermanagement_plugged_in = (palReadPad((GPIO_TypeDef*)GPIOC, GPIOC_PATH_DC) == PAL_HIGH);
|
||
| 81 | 58fe0e0b | Thomas Schöpping | |
| 82 | // update fuel gauges values
|
||
| 83 | const BQ27500::Driver::UpdateData* power[2] { |
||
| 84 | &global.bq27500[constants::PowerManagement::BAT_A].getStatus(), |
||
| 85 | &global.bq27500[constants::PowerManagement::BAT_B].getStatus() |
||
| 86 | }; |
||
| 87 | this->powerStatus.charging_flags.content.powermanagement_charging = (this->powerStatus.charging_flags.content.powermanagement_plugged_in && |
||
| 88 | this->powerStatus.charging_flags.content.vsys_higher_than_9V &&
|
||
| 89 | power[0]->minutes_to_empty == uint16_t(~0) && |
||
| 90 | power[1]->minutes_to_empty == uint16_t(~0))? |
||
| 91 | true : false; |
||
| 92 | this->powerStatus.charging_flags.content.diwheeldrive_charging = (this->powerStatus.charging_flags.content.diwheeldrive_enable_power_path && |
||
| 93 | this->powerStatus.charging_flags.content.vsys_higher_than_9V &&
|
||
| 94 | power[0]->minutes_to_empty == uint16_t(~0) && |
||
| 95 | power[1]->minutes_to_empty == uint16_t(~0))? |
||
| 96 | true : false; |
||
| 97 | this->powerStatus.state_of_charge = (power[0]->state_of_charge + power[1]->state_of_charge) / 2; |
||
| 98 | if (this->powerStatus.charging_flags.content.powermanagement_charging || this->powerStatus.charging_flags.content.diwheeldrive_charging) { |
||
| 99 | /*
|
||
| 100 | * Assumption:
|
||
| 101 | * When charging there is enough power available to charge both batteries at full rate simultaneously.
|
||
| 102 | * Thus, the second battery will not charge faster when the first battery is fully charged.
|
||
| 103 | */
|
||
| 104 | this->powerStatus.minutes_remaining = std::max(power[0]->minutes_to_full, power[1]->minutes_to_full); |
||
| 105 | } else {
|
||
| 106 | /*
|
||
| 107 | * Computation of the remaining discharging time:
|
||
| 108 | * Take the time until the first of the two batteries is empty and add the remaining time of the second battery but half.
|
||
| 109 | * time = min(a,b) + (max(a,b) - min(a,b))/2
|
||
| 110 | * <=> 2*time = 2*min(a,b) + max(a,b) - min(a,b)
|
||
| 111 | * <=> 2*time = min(a,b) + max(a,b)
|
||
| 112 | * <=> 2*time = a + b
|
||
| 113 | * <=> time = (a + b)/2
|
||
| 114 | */
|
||
| 115 | this->powerStatus.minutes_remaining = (power[0]->minutes_to_empty + power[1]->minutes_to_empty) / 2; |
||
| 116 | } |
||
| 117 | this->powerStatus.power_consumption = (power[0]->average_power_mW + power[1]->average_power_mW) / 2; |
||
| 118 | |||
| 119 | // update infrared sensor value
|
||
| 120 | // Note: The CANRx Value will never be updated in this thread
|
||
| 121 | for (int idx = 0; idx < 8; idx++) |
||
| 122 | this->proximityRingValue[idx] = global.vcnl4020[idx].getProximityScaledWoOffset();
|
||
| 123 | |||
| 124 | return 0; |
||
| 125 | } |
||
| 126 | |||
| 127 | 8c99e03a | galberding | void PowerManagement::setStrategy(uint8_t strategy){
|
| 128 | CANTxFrame frame; |
||
| 129 | chprintf((BaseSequentialStream*) &SD1, "Message Triggered!\n");
|
||
| 130 | // global.triggerCan = false;
|
||
| 131 | frame.SID = 0;
|
||
| 132 | this->encodeDeviceId(&frame, CAN::SET_LINE_FOLLOW_MSG);
|
||
| 133 | frame.data8[0] = strategy;
|
||
| 134 | frame.DLC = 1;
|
||
| 135 | this->transmitMessage(&frame);
|
||
| 136 | } |
||
| 137 | |||
| 138 | 58fe0e0b | Thomas Schöpping | void PowerManagement::periodicBroadcast() {
|
| 139 | CANTxFrame frame; |
||
| 140 | if (this->bc_counter % 10 == 0) { |
||
| 141 | frame.SID = 0;
|
||
| 142 | this->encodeDeviceId(&frame, CAN::POWER_STATUS_ID);
|
||
| 143 | frame.data8[0] = this->powerStatus.charging_flags.value; |
||
| 144 | frame.data8[1] = this->powerStatus.state_of_charge; |
||
| 145 | frame.data16[1] = this->powerStatus.minutes_remaining; |
||
| 146 | frame.data16[2] = this->powerStatus.power_consumption; |
||
| 147 | frame.DLC = 6;
|
||
| 148 | this->transmitMessage(&frame);
|
||
| 149 | } |
||
| 150 | for (int i = 0; i < 8; i++) { |
||
| 151 | frame.SID = 0;
|
||
| 152 | this->encodeDeviceId(&frame, CAN::PROXIMITY_RING_ID(i));
|
||
| 153 | frame.data16[0] = this->proximityRingValue[i]; |
||
| 154 | frame.DLC = 2;
|
||
| 155 | this->transmitMessage(&frame);
|
||
| 156 | b4885314 | Thomas Schöpping | BaseThread::sleep(US2ST(10)); // Use to sleep for 10 CAN cycle (@1Mbit), otherwise the cognition-board might not receive all messagee |
| 157 | 58fe0e0b | Thomas Schöpping | } |
| 158 | ++this->bc_counter;
|
||
| 159 | } |
||
| 160 | |||
| 161 | void PowerManagement::calibrate() {
|
||
| 162 | // Stop sending and receiving of values to indicate the calibration phase
|
||
| 163 | // eventTimerEvtSource->unregister(&this->eventTimerEvtListener);
|
||
| 164 | // rxFullCanEvtSource->unregister(&this->rxFullCanEvtListener);
|
||
| 165 | |||
| 166 | this->calibrateProximityRingValues();
|
||
| 167 | |||
| 168 | // Start sending and receving of values
|
||
| 169 | // eventTimerEvtSource->registerOne(&this->eventTimerEvtListener, CAN::PERIODIC_TIMER_ID);
|
||
| 170 | // rxFullCanEvtSource->registerOne(&this->rxFullCanEvtListener, CAN::RECEIVED_ID);
|
||
| 171 | } |
||
| 172 | |||
| 173 | void PowerManagement::calibrateProximityRingValues() {
|
||
| 174 | |||
| 175 | uint16_t buffer; |
||
| 176 | for (uint8_t idx = 0; idx < 8; ++idx) { |
||
| 177 | global.vcnl4020[idx].calibrate(); |
||
| 178 | buffer = global.vcnl4020[idx].getProximityOffset(); |
||
| 179 | global.memory.setVcnl4020Offset(buffer,idx); |
||
| 180 | } |
||
| 181 | } |
||
| 182 | |||
| 183 | ThreadReference PowerManagement::start(tprio_t PRIO) {
|
||
| 184 | this->ControllerAreaNetworkRx::start(PRIO + 1); |
||
| 185 | this->ControllerAreaNetworkTx::start(PRIO);
|
||
| 186 | return NULL; |
||
| 187 | } |
||
| 188 | |||
| 189 | types::power_status& |
||
| 190 | PowerManagement::getPowerStatus() |
||
| 191 | {
|
||
| 192 | return this->powerStatus; |
||
| 193 | } |
||
| 194 | |||
| 195 | msg_t PowerManagement::terminate(void) {
|
||
| 196 | msg_t ret = RDY_OK; |
||
| 197 | |||
| 198 | this->ControllerAreaNetworkTx::requestTerminate();
|
||
| 199 | ret |= this->ControllerAreaNetworkTx::wait();
|
||
| 200 | this->ControllerAreaNetworkRx::requestTerminate();
|
||
| 201 | ret |= this->ControllerAreaNetworkRx::wait();
|
||
| 202 | |||
| 203 | return ret;
|
||
| 204 | } |