amiro-os / components / Odometry.cpp @ 3f899f5d
History | View | Annotate | Download (7.322 KB)
| 1 | 58fe0e0b | Thomas Schöpping | #include <ch.hpp> |
|---|---|---|---|
| 2 | #include <hal.h> |
||
| 3 | |||
| 4 | #include <qei.h> |
||
| 5 | |||
| 6 | #include <amiro/Odometry.h> |
||
| 7 | |||
| 8 | #include <math.h> // cos(), sin() |
||
| 9 | #include <Matrix.h> // Matrixoperations "Matrix::*" |
||
| 10 | #include <amiro/Constants.h> // Constants "constants::*" |
||
| 11 | #include <chprintf.h> |
||
| 12 | |||
| 13 | using namespace chibios_rt; |
||
| 14 | using namespace amiro; |
||
| 15 | using namespace constants::DiWheelDrive; |
||
| 16 | |||
| 17 | |||
| 18 | Odometry::Odometry(MotorIncrements* mi) |
||
| 19 | : BaseStaticThread<512>(),
|
||
| 20 | motorIncrements(mi), |
||
| 21 | eventSource(), |
||
| 22 | period(50),
|
||
| 23 | incrementsPerRevolution(incrementsPerRevolution), |
||
| 24 | updatesPerMinute(constants::secondsPerMinute * constants::millisecondsPerSecond / this->period),
|
||
| 25 | wheelCircumference(wheelCircumferenceSI), |
||
| 26 | wheelBaseDistanceSI(wheelBaseDistanceSI) {
|
||
| 27 | |||
| 28 | |||
| 29 | // this-> = constants::secondsPerMinute * constants::millisecondsPerSecond / this->period;
|
||
| 30 | // this->wheelCircumference = constants::wheelCircumferenceSI;
|
||
| 31 | // this->wheelBaseDistanceSI = constants::wheelBaseDistanceSI;
|
||
| 32 | |||
| 33 | this->distance[LEFT_WHEEL] = 0.0f; |
||
| 34 | this->distance[RIGHT_WHEEL] = 0.0f; |
||
| 35 | this->increment[LEFT_WHEEL] = 0; |
||
| 36 | this->increment[RIGHT_WHEEL] = 0; |
||
| 37 | this->incrementDifference[LEFT_WHEEL] = 0.0f; |
||
| 38 | this->incrementDifference[RIGHT_WHEEL] = 0.0f; |
||
| 39 | this->distance[LEFT_WHEEL] = 0.0f; |
||
| 40 | this->distance[RIGHT_WHEEL] = 0.0f; |
||
| 41 | |||
| 42 | this->wheelError[LEFT_WHEEL] = wheelErrorSI[LEFT_WHEEL];
|
||
| 43 | this->wheelError[RIGHT_WHEEL] = wheelErrorSI[RIGHT_WHEEL];
|
||
| 44 | |||
| 45 | this->resetPosition(); // Init position |
||
| 46 | |||
| 47 | this->resetError(); // Init error Cp |
||
| 48 | |||
| 49 | } |
||
| 50 | |||
| 51 | types::position Odometry::getPosition() {
|
||
| 52 | types::position robotPosition; |
||
| 53 | const int32_t piScaled = int32_t(2 * M_PI * 1e6); |
||
| 54 | chSysLock(); |
||
| 55 | // Conversion from standard unit to µ unit
|
||
| 56 | robotPosition.x = this->pX * 1e6; |
||
| 57 | robotPosition.y = this->pY * 1e6; |
||
| 58 | robotPosition.f_z = (int32_t(this->pPhi * 1e6) % piScaled) + ((this->pPhi < 0) ? piScaled : 0); // Get only the postitve angel f_z in [0 .. 2 * pi] |
||
| 59 | chSysUnlock(); |
||
| 60 | // chprintf((BaseSequentialStream*) &SD1, "X:%d Y:%d Phi:%d", robotPosition.x,robotPosition.y, robotPosition.f_z);
|
||
| 61 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
| 62 | // chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
||
| 63 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
| 64 | return robotPosition;
|
||
| 65 | } |
||
| 66 | |||
| 67 | void Odometry::setPosition(float pX, float pY, float pPhi) { |
||
| 68 | chSysLock(); |
||
| 69 | this->pX = pX;
|
||
| 70 | this->pY = pY;
|
||
| 71 | this->pPhi = pPhi;
|
||
| 72 | chSysUnlock(); |
||
| 73 | } |
||
| 74 | |||
| 75 | void Odometry::resetPosition() {
|
||
| 76 | this->setPosition(0.0f,0.0f,0.0f); |
||
| 77 | } |
||
| 78 | |||
| 79 | void Odometry::setError(float* Cp3x3) { |
||
| 80 | chSysLock(); |
||
| 81 | // float** test;
|
||
| 82 | Matrix::copy<float>(Cp3x3,3,3, &(this->Cp3x3[0]),3,3); |
||
| 83 | // Matrix::copy<float>(Cp3x3,3,3, test,3,3);
|
||
| 84 | chSysUnlock(); |
||
| 85 | } |
||
| 86 | |||
| 87 | void Odometry::resetError() {
|
||
| 88 | // float zeroMatrix[9] = {};
|
||
| 89 | // this->setError(&(zeroMatrix[0]));
|
||
| 90 | Matrix::init<float>(&(this->Cp3x3[0]),3,3,0.0f); |
||
| 91 | } |
||
| 92 | |||
| 93 | EvtSource* Odometry::getEventSource() {
|
||
| 94 | return &this->eventSource; |
||
| 95 | } |
||
| 96 | |||
| 97 | msg_t Odometry::main(void) {
|
||
| 98 | systime_t time = System::getTime(); |
||
| 99 | this->setName("Odometry"); |
||
| 100 | |||
| 101 | while (!this->shouldTerminate()) { |
||
| 102 | time += MS2ST(this->period);
|
||
| 103 | |||
| 104 | // Update the base distance, because it may change after an calibration
|
||
| 105 | this->updateWheelBaseDistance();
|
||
| 106 | |||
| 107 | // Get the actual speed
|
||
| 108 | this->updateDistance();
|
||
| 109 | |||
| 110 | // Calculate the odometry
|
||
| 111 | this->updateOdometry();
|
||
| 112 | |||
| 113 | // chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
||
| 114 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
| 115 | // chprintf((BaseSequentialStream*) &SD1, "distance_left:%f distance_right:%f", this->distance[0],this->distance[1]);
|
||
| 116 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
| 117 | |||
| 118 | chThdSleepUntil(time); |
||
| 119 | } |
||
| 120 | |||
| 121 | return true; |
||
| 122 | } |
||
| 123 | |||
| 124 | void Odometry::updateOdometry() {
|
||
| 125 | |||
| 126 | // Get the temporary position and error
|
||
| 127 | float Cp3x3[9]; |
||
| 128 | chSysLock(); |
||
| 129 | float pX = this->pX; |
||
| 130 | float pY = this->pY; |
||
| 131 | float pPhi = this->pPhi; |
||
| 132 | Matrix::copy<float>(this->Cp3x3,3,3,Cp3x3,3,3); |
||
| 133 | chSysUnlock(); |
||
| 134 | |||
| 135 | ////////////////
|
||
| 136 | // Temporary calculations
|
||
| 137 | ////////////////
|
||
| 138 | |||
| 139 | // TMP: Rotated angular
|
||
| 140 | float dPhi = (this->distance[RIGHT_WHEEL] - this->distance[LEFT_WHEEL]) / this->wheelBaseDistanceSI; |
||
| 141 | |||
| 142 | // TMP: Moved distance
|
||
| 143 | float dDistance = (this->distance[RIGHT_WHEEL] + this->distance[LEFT_WHEEL]) / 2.0f; |
||
| 144 | |||
| 145 | // TMP: Argument for the trigonometric functions
|
||
| 146 | float trigArg = pPhi + dPhi / 2.0f; |
||
| 147 | |||
| 148 | // TMP: Trigonometric functions
|
||
| 149 | float cosArg = cos(trigArg);
|
||
| 150 | float sinArg = sin(trigArg);
|
||
| 151 | |||
| 152 | // TMP: Delta distance
|
||
| 153 | float dPX = dDistance * cosArg;
|
||
| 154 | float dPY = dDistance * sinArg;
|
||
| 155 | |||
| 156 | ////////////////
|
||
| 157 | // Position Update
|
||
| 158 | ////////////////
|
||
| 159 | |||
| 160 | // Update distance
|
||
| 161 | pX += dPX; |
||
| 162 | pY += dPY; |
||
| 163 | pPhi += dPhi; |
||
| 164 | |||
| 165 | ////////////////
|
||
| 166 | // Temporary error calculations
|
||
| 167 | ////////////////
|
||
| 168 | |||
| 169 | // position propagation error (3x3 matrix)
|
||
| 170 | float Fp3x3[9] = {1.0f, 0.0f, -dPY, |
||
| 171 | 0.0f, 1.0f, dPX, |
||
| 172 | 0.0f, 0.0f, 1.0f}; |
||
| 173 | // steering error (2x2 matrix)
|
||
| 174 | float Cs2x2[4] = {abs(this->distance[RIGHT_WHEEL])*wheelError[RIGHT_WHEEL],0.0f, |
||
| 175 | 0.0f, abs(this->distance[LEFT_WHEEL])*wheelError[LEFT_WHEEL]}; |
||
| 176 | // steering propagation error (3x2 matrix)
|
||
| 177 | float Fs3x2[6] = {(cosArg+dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, (sinArg+dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, |
||
| 178 | (sinArg-dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, (cosArg-dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, |
||
| 179 | -1.0f/this->wheelBaseDistanceSI , 1.0f/this->wheelBaseDistanceSI}; |
||
| 180 | |||
| 181 | ////////////////
|
||
| 182 | // Error calculations tmpCp = Fp*Cp*~Fp
|
||
| 183 | ////////////////
|
||
| 184 | // New position error
|
||
| 185 | float tmpCp3x3[9] = {0.0f}; |
||
| 186 | float tmpFpCp3x3[9] = {0.0f}; |
||
| 187 | // tmpFpCp = Fp*Cp
|
||
| 188 | Matrix::XdotY<float>(&(Fp3x3[0]),3,3,&(Cp3x3[0]),3,3,&(tmpFpCp3x3[0]),3,3); |
||
| 189 | // tmpCp = tmpFpCp*~Fp
|
||
| 190 | Matrix::XdotYtrans<float>(&(tmpFpCp3x3[0]),3,3,&(Fp3x3[0]),3,3,&(tmpCp3x3[0]),3,3); |
||
| 191 | |||
| 192 | ////////////////
|
||
| 193 | // Error calculations tmpCs = Fs*Cs*~Fs
|
||
| 194 | ////////////////
|
||
| 195 | // New steering error
|
||
| 196 | float tmpCs3x3[9] = {0.0f}; |
||
| 197 | float tmpFsCs3x2[6] = {0.0f}; |
||
| 198 | // tmpFsCs = Fs*Cs
|
||
| 199 | Matrix::XdotY<float>(&(Fs3x2[0]),3,2,&(Cs2x2[0]),2,2,&(tmpFsCs3x2[0]),3,2); |
||
| 200 | // tmpCs = tmpFsCs*~Fs
|
||
| 201 | Matrix::XdotYtrans<float>(&(tmpFsCs3x2[0]),3,2,&(Fs3x2[0]),3,2,&(tmpCs3x3[0]),3,3); |
||
| 202 | |||
| 203 | ////////////////
|
||
| 204 | // Error calculations Cp = Fp*Cp*~Fp + Fs*Cs*~Fs
|
||
| 205 | ////////////////
|
||
| 206 | Matrix::XplusY<float>(tmpCp3x3,3,3,tmpCs3x3,3,3,Cp3x3,3,3); |
||
| 207 | |||
| 208 | ////////////////
|
||
| 209 | // Write back
|
||
| 210 | ////////////////
|
||
| 211 | |||
| 212 | // Write back
|
||
| 213 | this->setPosition(pX,pY,pPhi);
|
||
| 214 | chSysLock(); |
||
| 215 | Matrix::copy<float>(Cp3x3,3,3,this->Cp3x3,3,3); |
||
| 216 | chSysUnlock(); |
||
| 217 | |||
| 218 | } |
||
| 219 | |||
| 220 | void Odometry::updateWheelBaseDistance() {
|
||
| 221 | this->wheelBaseDistanceSI = MotorControl::actualWheelBaseDistanceSI;
|
||
| 222 | } |
||
| 223 | |||
| 224 | void Odometry::updateDistance() {
|
||
| 225 | |||
| 226 | // Get the current increments of the QEI
|
||
| 227 | MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
||
| 228 | //
|
||
| 229 | // chprintf((BaseSequentialStream*) &SD1, "\ni_right = %d \t i_left = %d", this->increment[RIGHT_WHEEL], this->increment[LEFT_WHEEL]);
|
||
| 230 | // chprintf((BaseSequentialStream*) &SD1, "\niDiff_right = %d \t iDiff_left = %d", this->incrementDifference[RIGHT_WHEEL], this->incrementDifference[LEFT_WHEEL]);
|
||
| 231 | |||
| 232 | // Get the driven distance for each wheel
|
||
| 233 | MotorControl::updateDistance(this->incrementDifference, this->distance); |
||
| 234 | |||
| 235 | // chprintf((BaseSequentialStream*) &SD1, "\nx_right = %f \t x_left = %f", this->distance[RIGHT_WHEEL], this->distance[LEFT_WHEEL]);
|
||
| 236 | } |