amiro-os / components / Odometry.cpp @ 3f899f5d
History | View | Annotate | Download (7.322 KB)
1 | 58fe0e0b | Thomas Schöpping | #include <ch.hpp> |
---|---|---|---|
2 | #include <hal.h> |
||
3 | |||
4 | #include <qei.h> |
||
5 | |||
6 | #include <amiro/Odometry.h> |
||
7 | |||
8 | #include <math.h> // cos(), sin() |
||
9 | #include <Matrix.h> // Matrixoperations "Matrix::*" |
||
10 | #include <amiro/Constants.h> // Constants "constants::*" |
||
11 | #include <chprintf.h> |
||
12 | |||
13 | using namespace chibios_rt; |
||
14 | using namespace amiro; |
||
15 | using namespace constants::DiWheelDrive; |
||
16 | |||
17 | |||
18 | Odometry::Odometry(MotorIncrements* mi) |
||
19 | : BaseStaticThread<512>(),
|
||
20 | motorIncrements(mi), |
||
21 | eventSource(), |
||
22 | period(50),
|
||
23 | incrementsPerRevolution(incrementsPerRevolution), |
||
24 | updatesPerMinute(constants::secondsPerMinute * constants::millisecondsPerSecond / this->period),
|
||
25 | wheelCircumference(wheelCircumferenceSI), |
||
26 | wheelBaseDistanceSI(wheelBaseDistanceSI) { |
||
27 | |||
28 | |||
29 | // this-> = constants::secondsPerMinute * constants::millisecondsPerSecond / this->period;
|
||
30 | // this->wheelCircumference = constants::wheelCircumferenceSI;
|
||
31 | // this->wheelBaseDistanceSI = constants::wheelBaseDistanceSI;
|
||
32 | |||
33 | this->distance[LEFT_WHEEL] = 0.0f; |
||
34 | this->distance[RIGHT_WHEEL] = 0.0f; |
||
35 | this->increment[LEFT_WHEEL] = 0; |
||
36 | this->increment[RIGHT_WHEEL] = 0; |
||
37 | this->incrementDifference[LEFT_WHEEL] = 0.0f; |
||
38 | this->incrementDifference[RIGHT_WHEEL] = 0.0f; |
||
39 | this->distance[LEFT_WHEEL] = 0.0f; |
||
40 | this->distance[RIGHT_WHEEL] = 0.0f; |
||
41 | |||
42 | this->wheelError[LEFT_WHEEL] = wheelErrorSI[LEFT_WHEEL];
|
||
43 | this->wheelError[RIGHT_WHEEL] = wheelErrorSI[RIGHT_WHEEL];
|
||
44 | |||
45 | this->resetPosition(); // Init position |
||
46 | |||
47 | this->resetError(); // Init error Cp |
||
48 | |||
49 | } |
||
50 | |||
51 | types::position Odometry::getPosition() { |
||
52 | types::position robotPosition; |
||
53 | const int32_t piScaled = int32_t(2 * M_PI * 1e6); |
||
54 | chSysLock(); |
||
55 | // Conversion from standard unit to µ unit
|
||
56 | robotPosition.x = this->pX * 1e6; |
||
57 | robotPosition.y = this->pY * 1e6; |
||
58 | robotPosition.f_z = (int32_t(this->pPhi * 1e6) % piScaled) + ((this->pPhi < 0) ? piScaled : 0); // Get only the postitve angel f_z in [0 .. 2 * pi] |
||
59 | chSysUnlock(); |
||
60 | // chprintf((BaseSequentialStream*) &SD1, "X:%d Y:%d Phi:%d", robotPosition.x,robotPosition.y, robotPosition.f_z);
|
||
61 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
62 | // chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
||
63 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
64 | return robotPosition;
|
||
65 | } |
||
66 | |||
67 | void Odometry::setPosition(float pX, float pY, float pPhi) { |
||
68 | chSysLock(); |
||
69 | this->pX = pX;
|
||
70 | this->pY = pY;
|
||
71 | this->pPhi = pPhi;
|
||
72 | chSysUnlock(); |
||
73 | } |
||
74 | |||
75 | void Odometry::resetPosition() {
|
||
76 | this->setPosition(0.0f,0.0f,0.0f); |
||
77 | } |
||
78 | |||
79 | void Odometry::setError(float* Cp3x3) { |
||
80 | chSysLock(); |
||
81 | // float** test;
|
||
82 | Matrix::copy<float>(Cp3x3,3,3, &(this->Cp3x3[0]),3,3); |
||
83 | // Matrix::copy<float>(Cp3x3,3,3, test,3,3);
|
||
84 | chSysUnlock(); |
||
85 | } |
||
86 | |||
87 | void Odometry::resetError() {
|
||
88 | // float zeroMatrix[9] = {};
|
||
89 | // this->setError(&(zeroMatrix[0]));
|
||
90 | Matrix::init<float>(&(this->Cp3x3[0]),3,3,0.0f); |
||
91 | } |
||
92 | |||
93 | EvtSource* Odometry::getEventSource() { |
||
94 | return &this->eventSource; |
||
95 | } |
||
96 | |||
97 | msg_t Odometry::main(void) {
|
||
98 | systime_t time = System::getTime(); |
||
99 | this->setName("Odometry"); |
||
100 | |||
101 | while (!this->shouldTerminate()) { |
||
102 | time += MS2ST(this->period);
|
||
103 | |||
104 | // Update the base distance, because it may change after an calibration
|
||
105 | this->updateWheelBaseDistance();
|
||
106 | |||
107 | // Get the actual speed
|
||
108 | this->updateDistance();
|
||
109 | |||
110 | // Calculate the odometry
|
||
111 | this->updateOdometry();
|
||
112 | |||
113 | // chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
||
114 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
115 | // chprintf((BaseSequentialStream*) &SD1, "distance_left:%f distance_right:%f", this->distance[0],this->distance[1]);
|
||
116 | // chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
||
117 | |||
118 | chThdSleepUntil(time); |
||
119 | } |
||
120 | |||
121 | return true; |
||
122 | } |
||
123 | |||
124 | void Odometry::updateOdometry() {
|
||
125 | |||
126 | // Get the temporary position and error
|
||
127 | float Cp3x3[9]; |
||
128 | chSysLock(); |
||
129 | float pX = this->pX; |
||
130 | float pY = this->pY; |
||
131 | float pPhi = this->pPhi; |
||
132 | Matrix::copy<float>(this->Cp3x3,3,3,Cp3x3,3,3); |
||
133 | chSysUnlock(); |
||
134 | |||
135 | ////////////////
|
||
136 | // Temporary calculations
|
||
137 | ////////////////
|
||
138 | |||
139 | // TMP: Rotated angular
|
||
140 | float dPhi = (this->distance[RIGHT_WHEEL] - this->distance[LEFT_WHEEL]) / this->wheelBaseDistanceSI; |
||
141 | |||
142 | // TMP: Moved distance
|
||
143 | float dDistance = (this->distance[RIGHT_WHEEL] + this->distance[LEFT_WHEEL]) / 2.0f; |
||
144 | |||
145 | // TMP: Argument for the trigonometric functions
|
||
146 | float trigArg = pPhi + dPhi / 2.0f; |
||
147 | |||
148 | // TMP: Trigonometric functions
|
||
149 | float cosArg = cos(trigArg);
|
||
150 | float sinArg = sin(trigArg);
|
||
151 | |||
152 | // TMP: Delta distance
|
||
153 | float dPX = dDistance * cosArg;
|
||
154 | float dPY = dDistance * sinArg;
|
||
155 | |||
156 | ////////////////
|
||
157 | // Position Update
|
||
158 | ////////////////
|
||
159 | |||
160 | // Update distance
|
||
161 | pX += dPX; |
||
162 | pY += dPY; |
||
163 | pPhi += dPhi; |
||
164 | |||
165 | ////////////////
|
||
166 | // Temporary error calculations
|
||
167 | ////////////////
|
||
168 | |||
169 | // position propagation error (3x3 matrix)
|
||
170 | float Fp3x3[9] = {1.0f, 0.0f, -dPY, |
||
171 | 0.0f, 1.0f, dPX, |
||
172 | 0.0f, 0.0f, 1.0f}; |
||
173 | // steering error (2x2 matrix)
|
||
174 | float Cs2x2[4] = {abs(this->distance[RIGHT_WHEEL])*wheelError[RIGHT_WHEEL],0.0f, |
||
175 | 0.0f, abs(this->distance[LEFT_WHEEL])*wheelError[LEFT_WHEEL]}; |
||
176 | // steering propagation error (3x2 matrix)
|
||
177 | float Fs3x2[6] = {(cosArg+dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, (sinArg+dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, |
||
178 | (sinArg-dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, (cosArg-dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, |
||
179 | -1.0f/this->wheelBaseDistanceSI , 1.0f/this->wheelBaseDistanceSI}; |
||
180 | |||
181 | ////////////////
|
||
182 | // Error calculations tmpCp = Fp*Cp*~Fp
|
||
183 | ////////////////
|
||
184 | // New position error
|
||
185 | float tmpCp3x3[9] = {0.0f}; |
||
186 | float tmpFpCp3x3[9] = {0.0f}; |
||
187 | // tmpFpCp = Fp*Cp
|
||
188 | Matrix::XdotY<float>(&(Fp3x3[0]),3,3,&(Cp3x3[0]),3,3,&(tmpFpCp3x3[0]),3,3); |
||
189 | // tmpCp = tmpFpCp*~Fp
|
||
190 | Matrix::XdotYtrans<float>(&(tmpFpCp3x3[0]),3,3,&(Fp3x3[0]),3,3,&(tmpCp3x3[0]),3,3); |
||
191 | |||
192 | ////////////////
|
||
193 | // Error calculations tmpCs = Fs*Cs*~Fs
|
||
194 | ////////////////
|
||
195 | // New steering error
|
||
196 | float tmpCs3x3[9] = {0.0f}; |
||
197 | float tmpFsCs3x2[6] = {0.0f}; |
||
198 | // tmpFsCs = Fs*Cs
|
||
199 | Matrix::XdotY<float>(&(Fs3x2[0]),3,2,&(Cs2x2[0]),2,2,&(tmpFsCs3x2[0]),3,2); |
||
200 | // tmpCs = tmpFsCs*~Fs
|
||
201 | Matrix::XdotYtrans<float>(&(tmpFsCs3x2[0]),3,2,&(Fs3x2[0]),3,2,&(tmpCs3x3[0]),3,3); |
||
202 | |||
203 | ////////////////
|
||
204 | // Error calculations Cp = Fp*Cp*~Fp + Fs*Cs*~Fs
|
||
205 | ////////////////
|
||
206 | Matrix::XplusY<float>(tmpCp3x3,3,3,tmpCs3x3,3,3,Cp3x3,3,3); |
||
207 | |||
208 | ////////////////
|
||
209 | // Write back
|
||
210 | ////////////////
|
||
211 | |||
212 | // Write back
|
||
213 | this->setPosition(pX,pY,pPhi);
|
||
214 | chSysLock(); |
||
215 | Matrix::copy<float>(Cp3x3,3,3,this->Cp3x3,3,3); |
||
216 | chSysUnlock(); |
||
217 | |||
218 | } |
||
219 | |||
220 | void Odometry::updateWheelBaseDistance() {
|
||
221 | this->wheelBaseDistanceSI = MotorControl::actualWheelBaseDistanceSI;
|
||
222 | } |
||
223 | |||
224 | void Odometry::updateDistance() {
|
||
225 | |||
226 | // Get the current increments of the QEI
|
||
227 | MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
||
228 | //
|
||
229 | // chprintf((BaseSequentialStream*) &SD1, "\ni_right = %d \t i_left = %d", this->increment[RIGHT_WHEEL], this->increment[LEFT_WHEEL]);
|
||
230 | // chprintf((BaseSequentialStream*) &SD1, "\niDiff_right = %d \t iDiff_left = %d", this->incrementDifference[RIGHT_WHEEL], this->incrementDifference[LEFT_WHEEL]);
|
||
231 | |||
232 | // Get the driven distance for each wheel
|
||
233 | MotorControl::updateDistance(this->incrementDifference, this->distance); |
||
234 | |||
235 | // chprintf((BaseSequentialStream*) &SD1, "\nx_right = %f \t x_left = %f", this->distance[RIGHT_WHEEL], this->distance[LEFT_WHEEL]);
|
||
236 | } |