amiro-os / components / Odometry.cpp @ 3f899f5d
History | View | Annotate | Download (7.322 KB)
1 |
#include <ch.hpp> |
---|---|
2 |
#include <hal.h> |
3 |
|
4 |
#include <qei.h> |
5 |
|
6 |
#include <amiro/Odometry.h> |
7 |
|
8 |
#include <math.h> // cos(), sin() |
9 |
#include <Matrix.h> // Matrixoperations "Matrix::*" |
10 |
#include <amiro/Constants.h> // Constants "constants::*" |
11 |
#include <chprintf.h> |
12 |
|
13 |
using namespace chibios_rt; |
14 |
using namespace amiro; |
15 |
using namespace constants::DiWheelDrive; |
16 |
|
17 |
|
18 |
Odometry::Odometry(MotorIncrements* mi) |
19 |
: BaseStaticThread<512>(),
|
20 |
motorIncrements(mi), |
21 |
eventSource(), |
22 |
period(50),
|
23 |
incrementsPerRevolution(incrementsPerRevolution), |
24 |
updatesPerMinute(constants::secondsPerMinute * constants::millisecondsPerSecond / this->period),
|
25 |
wheelCircumference(wheelCircumferenceSI), |
26 |
wheelBaseDistanceSI(wheelBaseDistanceSI) { |
27 |
|
28 |
|
29 |
// this-> = constants::secondsPerMinute * constants::millisecondsPerSecond / this->period;
|
30 |
// this->wheelCircumference = constants::wheelCircumferenceSI;
|
31 |
// this->wheelBaseDistanceSI = constants::wheelBaseDistanceSI;
|
32 |
|
33 |
this->distance[LEFT_WHEEL] = 0.0f; |
34 |
this->distance[RIGHT_WHEEL] = 0.0f; |
35 |
this->increment[LEFT_WHEEL] = 0; |
36 |
this->increment[RIGHT_WHEEL] = 0; |
37 |
this->incrementDifference[LEFT_WHEEL] = 0.0f; |
38 |
this->incrementDifference[RIGHT_WHEEL] = 0.0f; |
39 |
this->distance[LEFT_WHEEL] = 0.0f; |
40 |
this->distance[RIGHT_WHEEL] = 0.0f; |
41 |
|
42 |
this->wheelError[LEFT_WHEEL] = wheelErrorSI[LEFT_WHEEL];
|
43 |
this->wheelError[RIGHT_WHEEL] = wheelErrorSI[RIGHT_WHEEL];
|
44 |
|
45 |
this->resetPosition(); // Init position |
46 |
|
47 |
this->resetError(); // Init error Cp |
48 |
|
49 |
} |
50 |
|
51 |
types::position Odometry::getPosition() { |
52 |
types::position robotPosition; |
53 |
const int32_t piScaled = int32_t(2 * M_PI * 1e6); |
54 |
chSysLock(); |
55 |
// Conversion from standard unit to ยต unit
|
56 |
robotPosition.x = this->pX * 1e6; |
57 |
robotPosition.y = this->pY * 1e6; |
58 |
robotPosition.f_z = (int32_t(this->pPhi * 1e6) % piScaled) + ((this->pPhi < 0) ? piScaled : 0); // Get only the postitve angel f_z in [0 .. 2 * pi] |
59 |
chSysUnlock(); |
60 |
// chprintf((BaseSequentialStream*) &SD1, "X:%d Y:%d Phi:%d", robotPosition.x,robotPosition.y, robotPosition.f_z);
|
61 |
// chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
62 |
// chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
63 |
// chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
64 |
return robotPosition;
|
65 |
} |
66 |
|
67 |
void Odometry::setPosition(float pX, float pY, float pPhi) { |
68 |
chSysLock(); |
69 |
this->pX = pX;
|
70 |
this->pY = pY;
|
71 |
this->pPhi = pPhi;
|
72 |
chSysUnlock(); |
73 |
} |
74 |
|
75 |
void Odometry::resetPosition() {
|
76 |
this->setPosition(0.0f,0.0f,0.0f); |
77 |
} |
78 |
|
79 |
void Odometry::setError(float* Cp3x3) { |
80 |
chSysLock(); |
81 |
// float** test;
|
82 |
Matrix::copy<float>(Cp3x3,3,3, &(this->Cp3x3[0]),3,3); |
83 |
// Matrix::copy<float>(Cp3x3,3,3, test,3,3);
|
84 |
chSysUnlock(); |
85 |
} |
86 |
|
87 |
void Odometry::resetError() {
|
88 |
// float zeroMatrix[9] = {};
|
89 |
// this->setError(&(zeroMatrix[0]));
|
90 |
Matrix::init<float>(&(this->Cp3x3[0]),3,3,0.0f); |
91 |
} |
92 |
|
93 |
EvtSource* Odometry::getEventSource() { |
94 |
return &this->eventSource; |
95 |
} |
96 |
|
97 |
msg_t Odometry::main(void) {
|
98 |
systime_t time = System::getTime(); |
99 |
this->setName("Odometry"); |
100 |
|
101 |
while (!this->shouldTerminate()) { |
102 |
time += MS2ST(this->period);
|
103 |
|
104 |
// Update the base distance, because it may change after an calibration
|
105 |
this->updateWheelBaseDistance();
|
106 |
|
107 |
// Get the actual speed
|
108 |
this->updateDistance();
|
109 |
|
110 |
// Calculate the odometry
|
111 |
this->updateOdometry();
|
112 |
|
113 |
// chprintf((BaseSequentialStream*) &SD1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
114 |
// chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
115 |
// chprintf((BaseSequentialStream*) &SD1, "distance_left:%f distance_right:%f", this->distance[0],this->distance[1]);
|
116 |
// chprintf((BaseSequentialStream*) &SD1, "\r\n");
|
117 |
|
118 |
chThdSleepUntil(time); |
119 |
} |
120 |
|
121 |
return true; |
122 |
} |
123 |
|
124 |
void Odometry::updateOdometry() {
|
125 |
|
126 |
// Get the temporary position and error
|
127 |
float Cp3x3[9]; |
128 |
chSysLock(); |
129 |
float pX = this->pX; |
130 |
float pY = this->pY; |
131 |
float pPhi = this->pPhi; |
132 |
Matrix::copy<float>(this->Cp3x3,3,3,Cp3x3,3,3); |
133 |
chSysUnlock(); |
134 |
|
135 |
////////////////
|
136 |
// Temporary calculations
|
137 |
////////////////
|
138 |
|
139 |
// TMP: Rotated angular
|
140 |
float dPhi = (this->distance[RIGHT_WHEEL] - this->distance[LEFT_WHEEL]) / this->wheelBaseDistanceSI; |
141 |
|
142 |
// TMP: Moved distance
|
143 |
float dDistance = (this->distance[RIGHT_WHEEL] + this->distance[LEFT_WHEEL]) / 2.0f; |
144 |
|
145 |
// TMP: Argument for the trigonometric functions
|
146 |
float trigArg = pPhi + dPhi / 2.0f; |
147 |
|
148 |
// TMP: Trigonometric functions
|
149 |
float cosArg = cos(trigArg);
|
150 |
float sinArg = sin(trigArg);
|
151 |
|
152 |
// TMP: Delta distance
|
153 |
float dPX = dDistance * cosArg;
|
154 |
float dPY = dDistance * sinArg;
|
155 |
|
156 |
////////////////
|
157 |
// Position Update
|
158 |
////////////////
|
159 |
|
160 |
// Update distance
|
161 |
pX += dPX; |
162 |
pY += dPY; |
163 |
pPhi += dPhi; |
164 |
|
165 |
////////////////
|
166 |
// Temporary error calculations
|
167 |
////////////////
|
168 |
|
169 |
// position propagation error (3x3 matrix)
|
170 |
float Fp3x3[9] = {1.0f, 0.0f, -dPY, |
171 |
0.0f, 1.0f, dPX, |
172 |
0.0f, 0.0f, 1.0f}; |
173 |
// steering error (2x2 matrix)
|
174 |
float Cs2x2[4] = {abs(this->distance[RIGHT_WHEEL])*wheelError[RIGHT_WHEEL],0.0f, |
175 |
0.0f, abs(this->distance[LEFT_WHEEL])*wheelError[LEFT_WHEEL]}; |
176 |
// steering propagation error (3x2 matrix)
|
177 |
float Fs3x2[6] = {(cosArg+dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, (sinArg+dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, |
178 |
(sinArg-dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, (cosArg-dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, |
179 |
-1.0f/this->wheelBaseDistanceSI , 1.0f/this->wheelBaseDistanceSI}; |
180 |
|
181 |
////////////////
|
182 |
// Error calculations tmpCp = Fp*Cp*~Fp
|
183 |
////////////////
|
184 |
// New position error
|
185 |
float tmpCp3x3[9] = {0.0f}; |
186 |
float tmpFpCp3x3[9] = {0.0f}; |
187 |
// tmpFpCp = Fp*Cp
|
188 |
Matrix::XdotY<float>(&(Fp3x3[0]),3,3,&(Cp3x3[0]),3,3,&(tmpFpCp3x3[0]),3,3); |
189 |
// tmpCp = tmpFpCp*~Fp
|
190 |
Matrix::XdotYtrans<float>(&(tmpFpCp3x3[0]),3,3,&(Fp3x3[0]),3,3,&(tmpCp3x3[0]),3,3); |
191 |
|
192 |
////////////////
|
193 |
// Error calculations tmpCs = Fs*Cs*~Fs
|
194 |
////////////////
|
195 |
// New steering error
|
196 |
float tmpCs3x3[9] = {0.0f}; |
197 |
float tmpFsCs3x2[6] = {0.0f}; |
198 |
// tmpFsCs = Fs*Cs
|
199 |
Matrix::XdotY<float>(&(Fs3x2[0]),3,2,&(Cs2x2[0]),2,2,&(tmpFsCs3x2[0]),3,2); |
200 |
// tmpCs = tmpFsCs*~Fs
|
201 |
Matrix::XdotYtrans<float>(&(tmpFsCs3x2[0]),3,2,&(Fs3x2[0]),3,2,&(tmpCs3x3[0]),3,3); |
202 |
|
203 |
////////////////
|
204 |
// Error calculations Cp = Fp*Cp*~Fp + Fs*Cs*~Fs
|
205 |
////////////////
|
206 |
Matrix::XplusY<float>(tmpCp3x3,3,3,tmpCs3x3,3,3,Cp3x3,3,3); |
207 |
|
208 |
////////////////
|
209 |
// Write back
|
210 |
////////////////
|
211 |
|
212 |
// Write back
|
213 |
this->setPosition(pX,pY,pPhi);
|
214 |
chSysLock(); |
215 |
Matrix::copy<float>(Cp3x3,3,3,this->Cp3x3,3,3); |
216 |
chSysUnlock(); |
217 |
|
218 |
} |
219 |
|
220 |
void Odometry::updateWheelBaseDistance() {
|
221 |
this->wheelBaseDistanceSI = MotorControl::actualWheelBaseDistanceSI;
|
222 |
} |
223 |
|
224 |
void Odometry::updateDistance() {
|
225 |
|
226 |
// Get the current increments of the QEI
|
227 |
MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
228 |
//
|
229 |
// chprintf((BaseSequentialStream*) &SD1, "\ni_right = %d \t i_left = %d", this->increment[RIGHT_WHEEL], this->increment[LEFT_WHEEL]);
|
230 |
// chprintf((BaseSequentialStream*) &SD1, "\niDiff_right = %d \t iDiff_left = %d", this->incrementDifference[RIGHT_WHEEL], this->incrementDifference[LEFT_WHEEL]);
|
231 |
|
232 |
// Get the driven distance for each wheel
|
233 |
MotorControl::updateDistance(this->incrementDifference, this->distance); |
234 |
|
235 |
// chprintf((BaseSequentialStream*) &SD1, "\nx_right = %f \t x_left = %f", this->distance[RIGHT_WHEEL], this->distance[LEFT_WHEEL]);
|
236 |
} |