amiro-os / devices / DiWheelDrive / main.cpp @ 9c46b728
History | View | Annotate | Download (50.4 KB)
1 |
#define BL_CALLBACK_TABLE_ADDR (0x08000000 + 0x01C0) |
---|---|
2 |
#define BL_MAGIC_NUMBER ((uint32_t)0xFF669900u) |
3 |
|
4 |
#define SHUTDOWN_NONE 0 |
5 |
#define SHUTDOWN_TRANSPORTATION 1 |
6 |
#define SHUTDOWN_DEEPSLEEP 2 |
7 |
#define SHUTDOWN_HIBERNATE 3 |
8 |
#define SHUTDOWN_RESTART 4 |
9 |
#define SHUTDOWN_HANDLE_REQUEST 5 |
10 |
|
11 |
#include <ch.hpp> |
12 |
|
13 |
#include <amiro/util/util.h> |
14 |
#include <global.hpp> |
15 |
#include <exti.hpp> |
16 |
|
17 |
#include <chprintf.h> |
18 |
#include <shell.h> |
19 |
|
20 |
#include "linefollow2.hpp" |
21 |
|
22 |
using namespace chibios_rt; |
23 |
|
24 |
Global global; |
25 |
|
26 |
struct blVersion_t {
|
27 |
const uint8_t identifier;
|
28 |
const uint8_t major;
|
29 |
const uint8_t minor;
|
30 |
const uint8_t patch;
|
31 |
} __attribute__((packed)); |
32 |
|
33 |
void systemShutdown() {
|
34 |
types::kinematic k; |
35 |
uint8_t i; |
36 |
|
37 |
// // make sure we assert SYS_PD_N to delay shutdown until we're done.
|
38 |
// boardRequestShutdown();
|
39 |
|
40 |
// stop the user thread
|
41 |
global.userThread.requestTerminate(); |
42 |
global.userThread.wait(); |
43 |
|
44 |
k.x = 0x00u;
|
45 |
k.w_z = 0x00u;
|
46 |
|
47 |
// stop wheels
|
48 |
global.robot.setTargetSpeed(k); |
49 |
global.robot.terminate(); |
50 |
|
51 |
for (i = 0x00; i < global.vcnl4020.size(); i++) { |
52 |
global.vcnl4020[i].requestTerminate(); |
53 |
global.vcnl4020[i].wait(); |
54 |
} |
55 |
|
56 |
global.ina219.requestTerminate(); |
57 |
global.ina219.wait(); |
58 |
global.hmc5883l.requestTerminate(); |
59 |
global.hmc5883l.wait(); |
60 |
global.l3g4200d.requestTerminate(); |
61 |
global.l3g4200d.wait(); |
62 |
|
63 |
global.motorcontrol.requestTerminate(); |
64 |
global.motorcontrol.wait(); |
65 |
global.odometry.requestTerminate(); |
66 |
global.odometry.wait(); |
67 |
|
68 |
// stop I²C
|
69 |
for (i = 0; i < global.V_I2C2.size(); ++i) |
70 |
global.V_I2C2[i].stop(); |
71 |
global.HW_I2C2.stop(); |
72 |
|
73 |
global.lis331dlh.requestTerminate(); |
74 |
global.lis331dlh.wait(); |
75 |
|
76 |
global.lis331dlh.configure(&global.accel_sleep_config); |
77 |
// global.lis331dlh.start(NORMALPRIO +4);
|
78 |
|
79 |
// boardWriteIoPower(0);
|
80 |
// boardStandby();
|
81 |
|
82 |
return;
|
83 |
} |
84 |
|
85 |
|
86 |
//void (*shellcmd_t)(BaseSequentialStream *chp, int argc, char *argv[]);
|
87 |
|
88 |
void shellRequestShutdown(BaseSequentialStream *chp, int argc, char *argv[]) { |
89 |
|
90 |
chprintf(chp, "shellRequestShutdown\n");
|
91 |
|
92 |
/* if nor argument was given, print some help text */
|
93 |
if (argc == 0 || strcmp(argv[0], "help") == 0) { |
94 |
chprintf(chp, "\tUSAGE:\n");
|
95 |
chprintf(chp, "> shutdown <type>\n");
|
96 |
chprintf(chp, "\n");
|
97 |
chprintf(chp, "\ttype\n");
|
98 |
chprintf(chp, "The type of shutdown to perform.\n");
|
99 |
chprintf(chp, "Choose one of the following types:\n");
|
100 |
chprintf(chp, " transportation - Ultra low-power mode with all wakeups disabled.\n");
|
101 |
chprintf(chp, " The robot can not be charged.\n");
|
102 |
chprintf(chp, " deepsleep - Ultra low-power mode with several wakeups enabled.\n");
|
103 |
chprintf(chp, " The robot can only be charged via the power plug.\n");
|
104 |
chprintf(chp, " hibernate - Medium low-power mode, but with full charging capabilities.\n");
|
105 |
chprintf(chp, " restart - Performs a system restart.\n");
|
106 |
chprintf(chp, "Alternatively, you can use the shortcuts 't', 'd', 'h', and 'r' respectively.");
|
107 |
chprintf(chp, "\n");
|
108 |
return;
|
109 |
} |
110 |
|
111 |
if (strcmp(argv[0],"transportation") == 0 || strcmp(argv[0],"t") == 0) { |
112 |
shutdown_now = SHUTDOWN_TRANSPORTATION; |
113 |
chprintf(chp, "shutdown to transportation mode initialized\n");
|
114 |
} else if (strcmp(argv[0],"deepsleep") == 0 || strcmp(argv[0],"d") == 0) { |
115 |
shutdown_now = SHUTDOWN_DEEPSLEEP; |
116 |
chprintf(chp, "shutdown to deepsleep mode initialized\n");
|
117 |
} else if (strcmp(argv[0],"hibernate") == 0 || strcmp(argv[0],"h") == 0) { |
118 |
shutdown_now = SHUTDOWN_HIBERNATE; |
119 |
chprintf(chp, "shutdown to hibernate mode initialized\n");
|
120 |
} else if (strcmp(argv[0],"restart") == 0 || strcmp(argv[0],"r") == 0) { |
121 |
chprintf(chp, "restart initialized\n");
|
122 |
shutdown_now = SHUTDOWN_RESTART; |
123 |
} else {
|
124 |
chprintf(chp, "ERROR: unknown argument!\n");
|
125 |
shutdown_now = SHUTDOWN_NONE; |
126 |
} |
127 |
|
128 |
return;
|
129 |
} |
130 |
|
131 |
void shellRequestWakeup(BaseSequentialStream *chp, int argc, char *argv[]) { |
132 |
int i;
|
133 |
chprintf(chp, "shellRequestWakeup\n");
|
134 |
|
135 |
for (i = 0x00u; i < argc; i++) |
136 |
chprintf(chp, "%s\n", argv[i]);
|
137 |
|
138 |
boardWakeup(); |
139 |
} |
140 |
|
141 |
void shellRequestGetMemoryData(BaseSequentialStream *chp, int argc, char *argv[]) { |
142 |
enum Type {HEX, U8, U16, U32, S8, S16, S32};
|
143 |
|
144 |
chprintf(chp, "shellRequestReadData\n");
|
145 |
|
146 |
if (argc < 2 || strcmp(argv[0],"help") == 0) |
147 |
{ |
148 |
chprintf(chp, "Usage: %s\n","get_memory_data <type> <start> [<count>]"); |
149 |
chprintf(chp, "\n");
|
150 |
chprintf(chp, "\ttype\n");
|
151 |
chprintf(chp, "The data type as which to interpret the data.\n");
|
152 |
chprintf(chp, "Choose one of the following types:\n");
|
153 |
chprintf(chp, " hex - one byte as hexadecimal value\n");
|
154 |
chprintf(chp, " u8 - unsigned integer (8 bit)\n");
|
155 |
chprintf(chp, " u16 - unsigned integer (16 bit)\n");
|
156 |
chprintf(chp, " u32 - unsigned integer (32 bit)\n");
|
157 |
chprintf(chp, " s8 - signed integer (8 bit)\n");
|
158 |
chprintf(chp, " s16 - signed integer (16 bit)\n");
|
159 |
chprintf(chp, " s32 - signed integer (32 bit)\n");
|
160 |
chprintf(chp, "\tstart\n");
|
161 |
chprintf(chp, "The first byte to read from the memory.\n");
|
162 |
chprintf(chp, "\tcount [default = 1]\n");
|
163 |
chprintf(chp, "The number of elements to read.\n");
|
164 |
chprintf(chp, "\n");
|
165 |
chprintf(chp, "\tNOTE\n");
|
166 |
chprintf(chp, "Type conversions of this function might fail.\n");
|
167 |
chprintf(chp, "If so, use type=hex and convert by hand.\n");
|
168 |
chprintf(chp, "\n");
|
169 |
return;
|
170 |
} |
171 |
|
172 |
uint8_t type_size = 0;
|
173 |
Type type = HEX; |
174 |
if (strcmp(argv[0],"hex") == 0) { |
175 |
type_size = sizeof(unsigned char); |
176 |
type = HEX; |
177 |
} else if(strcmp(argv[0],"u8") == 0) { |
178 |
type_size = sizeof(uint8_t);
|
179 |
type = U8; |
180 |
} else if(strcmp(argv[0],"u16") == 0) { |
181 |
type_size = sizeof(uint16_t);
|
182 |
type = U16; |
183 |
} else if(strcmp(argv[0],"u32") == 0) { |
184 |
type_size = sizeof(uint32_t);
|
185 |
type = U32; |
186 |
} else if(strcmp(argv[0],"s8") == 0) { |
187 |
type_size = sizeof(int8_t);
|
188 |
type = S8; |
189 |
} else if(strcmp(argv[0],"s16") == 0) { |
190 |
type_size = sizeof(int16_t);
|
191 |
type = S16; |
192 |
} else if(strcmp(argv[0],"s32") == 0) { |
193 |
type_size = sizeof(int32_t);
|
194 |
type = S32; |
195 |
} else {
|
196 |
chprintf(chp, "First argument invalid. Use 'get_memory_data help' for help.\n");
|
197 |
return;
|
198 |
} |
199 |
|
200 |
unsigned int start_byte = atoi(argv[1]); |
201 |
|
202 |
unsigned int num_elements = 1; |
203 |
if (argc >= 3) |
204 |
num_elements = atoi(argv[2]);
|
205 |
|
206 |
const size_t eeprom_size = EEPROM::getsize(&global.at24c01);
|
207 |
uint8_t buffer[eeprom_size]; |
208 |
if (start_byte + (type_size * num_elements) > eeprom_size) {
|
209 |
num_elements = (eeprom_size - start_byte) / type_size; |
210 |
chprintf(chp, "Warning: request exceeds eeprom size -> limiting to %u values.\n", num_elements);
|
211 |
} |
212 |
|
213 |
chFileStreamSeek((BaseFileStream*)&global.at24c01, start_byte); |
214 |
|
215 |
// Work around, because stm32f1 cannot read a single byte
|
216 |
if (type_size*num_elements < 2) |
217 |
type_size = 2;
|
218 |
|
219 |
uint32_t bytes_read = chSequentialStreamRead((BaseFileStream*)&global.at24c01, buffer, type_size*num_elements); |
220 |
|
221 |
if (bytes_read != type_size*num_elements)
|
222 |
chprintf(chp, "Warning: %u of %u requested bytes were read.\n", bytes_read, type_size*num_elements);
|
223 |
|
224 |
for (unsigned int i = 0; i < num_elements; ++i) { |
225 |
switch (type) {
|
226 |
case HEX:
|
227 |
chprintf(chp, "%02X ", buffer[i]);
|
228 |
break;
|
229 |
case U8:
|
230 |
chprintf(chp, "%03u ", ((uint8_t*)buffer)[i]);
|
231 |
break;
|
232 |
case U16:
|
233 |
chprintf(chp, "%05u ", ((uint16_t*)buffer)[i]);
|
234 |
break;
|
235 |
case U32:
|
236 |
chprintf(chp, "%010u ", ((uint32_t*)buffer)[i]);
|
237 |
break;
|
238 |
case S8:
|
239 |
chprintf(chp, "%+03d ", ((int8_t*)buffer)[i]);
|
240 |
break;
|
241 |
case S16:
|
242 |
chprintf(chp, "%+05d ", ((int16_t*)buffer)[i]);
|
243 |
break;
|
244 |
case S32:
|
245 |
chprintf(chp, "%+010d ", ((int32_t*)buffer)[i]);
|
246 |
break;
|
247 |
default:
|
248 |
break;
|
249 |
} |
250 |
} |
251 |
chprintf(chp, "\n");
|
252 |
|
253 |
return;
|
254 |
} |
255 |
|
256 |
void shellRequestSetLights(BaseSequentialStream *chp, int argc, char *argv[]) { |
257 |
|
258 |
if (argc < 2 || argc == 3 ||strcmp(argv[0],"help") == 0) { |
259 |
chprintf(chp, "\tUSAGE:\n");
|
260 |
chprintf(chp, "> set_lights <led mask> <white/red> [<green> <blue>]\n");
|
261 |
chprintf(chp, "\n");
|
262 |
chprintf(chp, "\tled mask\n");
|
263 |
chprintf(chp, "The LEDs to be set.\n");
|
264 |
chprintf(chp, "You can set multiple LEDs at once by adding the following values:\n");
|
265 |
chprintf(chp, " 0x01 - rear left LED (SSW)\n");
|
266 |
chprintf(chp, " 0x02 - left rear LED (WSW)\n");
|
267 |
chprintf(chp, " 0x04 - left front LED (WNW)\n");
|
268 |
chprintf(chp, " 0x08 - front left LED (NNW)\n");
|
269 |
chprintf(chp, " 0x10 - front right LED (NNE)\n");
|
270 |
chprintf(chp, " 0x20 - right front LED (ENE)\n");
|
271 |
chprintf(chp, " 0x40 - right rear LED (ESE)\n");
|
272 |
chprintf(chp, " 0x80 - rear right LED (SSE)\n");
|
273 |
chprintf(chp, "\twhite/red\n");
|
274 |
chprintf(chp, "If no optional argument is given, this arguments sets the white value of the selected LEDs.\n");
|
275 |
chprintf(chp, "Otherwise this arguments sets the red color channel value.\n");
|
276 |
chprintf(chp, "\tgreen\n");
|
277 |
chprintf(chp, "Sets the green color channel value.\n");
|
278 |
chprintf(chp, "\tblue\n");
|
279 |
chprintf(chp, "Sets the blue color channel value.\n");
|
280 |
chprintf(chp, "\n");
|
281 |
chprintf(chp, "\tExample:\n");
|
282 |
chprintf(chp, "This line will set the two most left and two most right LEDs to bright cyan.\n");
|
283 |
chprintf(chp, "> set_lights 0x66 0 255 255\n");
|
284 |
chprintf(chp, "\n");
|
285 |
return;
|
286 |
} |
287 |
|
288 |
int arg_mask = strtol(argv[0], NULL, 0); |
289 |
int red = strtol(argv[1], NULL, 0); |
290 |
int green = red;
|
291 |
int blue = red;
|
292 |
if (argc >= 4) { |
293 |
green = strtol(argv[2], NULL, 0); |
294 |
blue = strtol(argv[3], NULL, 0); |
295 |
} |
296 |
Color color(red, green, blue); |
297 |
|
298 |
if (arg_mask & 0x01) { |
299 |
global.robot.setLightColor(constants::LightRing::LED_SSW, color); |
300 |
} |
301 |
if (arg_mask & 0x02) { |
302 |
global.robot.setLightColor(constants::LightRing::LED_WSW, color); |
303 |
} |
304 |
if (arg_mask & 0x04) { |
305 |
global.robot.setLightColor(constants::LightRing::LED_WNW, color); |
306 |
} |
307 |
if (arg_mask & 0x08) { |
308 |
global.robot.setLightColor(constants::LightRing::LED_NNW, color); |
309 |
} |
310 |
if (arg_mask & 0x10) { |
311 |
global.robot.setLightColor(constants::LightRing::LED_NNE, color); |
312 |
} |
313 |
if (arg_mask & 0x20) { |
314 |
global.robot.setLightColor(constants::LightRing::LED_ENE, color); |
315 |
} |
316 |
if (arg_mask & 0x40) { |
317 |
global.robot.setLightColor(constants::LightRing::LED_ESE, color); |
318 |
} |
319 |
if (arg_mask & 0x80) { |
320 |
global.robot.setLightColor(constants::LightRing::LED_SSE, color); |
321 |
} |
322 |
|
323 |
return;
|
324 |
} |
325 |
|
326 |
void boardPeripheryCheck(BaseSequentialStream *chp) {
|
327 |
msg_t result; |
328 |
chprintf(chp, "\nCHECK: START\n");
|
329 |
// Check the accelerometer
|
330 |
result = global.lis331dlh.getCheck(); |
331 |
if (result == global.lis331dlh.CHECK_OK)
|
332 |
chprintf(chp, "LIS331DLH: OK\n");
|
333 |
else
|
334 |
chprintf(chp, "LIS331DLH: FAIL\n");
|
335 |
|
336 |
// Self-test accelerometer
|
337 |
// lis331dlh.printSelfTest(NULL);
|
338 |
|
339 |
// Check the eeprom
|
340 |
result = global.memory.getCheck(); |
341 |
if ( result != global.memory.OK)
|
342 |
chprintf(chp, "Memory Structure: FAIL\n");
|
343 |
else
|
344 |
chprintf(chp, "Memory Structure: OK\n");
|
345 |
|
346 |
// Check the gyroscope
|
347 |
result = global.l3g4200d.getCheck(); |
348 |
if (result == global.l3g4200d.CHECK_OK)
|
349 |
chprintf(chp, "L3G4200D: OK\n");
|
350 |
else
|
351 |
chprintf(chp, "L3G4200D: FAIL\n");
|
352 |
|
353 |
// Check the magnetometer
|
354 |
result = global.hmc5883l.getCheck(); |
355 |
if (result == global.hmc5883l.CHECK_OK)
|
356 |
chprintf(chp, "HMC5883L: OK\n");
|
357 |
else
|
358 |
chprintf(chp, "HMC5883L: FAIL\n");
|
359 |
|
360 |
// Check the MUX
|
361 |
result = global.HW_PCA9544.getCheck(); |
362 |
if (result == global.HW_PCA9544.CHECK_OK)
|
363 |
chprintf(chp, "PCA9544: OK\n");
|
364 |
else
|
365 |
chprintf(chp, "PCA9544: FAIL\n");
|
366 |
|
367 |
// Check the power monitor
|
368 |
chprintf(chp, "INA219:\tVDD (3.3V):\n");
|
369 |
result = global.ina219.selftest(); |
370 |
if (result == BaseSensor<>::NOT_IMPLEMENTED)
|
371 |
chprintf(chp, "->\tnot implemented\n");
|
372 |
else if (result != INA219::Driver::ST_OK) |
373 |
chprintf(chp, "->\tFAIL (error code 0x%02X)\n", result);
|
374 |
else
|
375 |
chprintf(chp, "->\tOK\n");
|
376 |
|
377 |
// Check the proximitysensors
|
378 |
for (uint8_t i = 0x00; i < global.vcnl4020.size(); i++) { |
379 |
result = global.vcnl4020[i].getCheck(); |
380 |
if (result == global.vcnl4020[i].CHECK_OK)
|
381 |
chprintf(chp, "VCNL4020: %d OK\n", i);
|
382 |
else
|
383 |
chprintf(chp, "VCNL4020: %d FAIL\n", i);
|
384 |
} |
385 |
chprintf(chp, "CHECK: FINISH\n");
|
386 |
} |
387 |
|
388 |
void shellRequestCheck(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
389 |
chprintf(chp, "shellRequestCheck\n");
|
390 |
boardPeripheryCheck(chp); |
391 |
} |
392 |
|
393 |
void shellRequestResetMemory(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
394 |
chprintf(chp, "shellRequestInitMemory\n");
|
395 |
|
396 |
msg_t res = global.memory.resetMemory(); |
397 |
if ( res != global.memory.OK)
|
398 |
chprintf(chp, "Memory Init: FAIL\n");
|
399 |
else
|
400 |
chprintf(chp, "Memory Init: OK\n");
|
401 |
} |
402 |
|
403 |
void shellRequestGetBoardId(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
404 |
chprintf(chp, "shellRequestGetBoardId\n");
|
405 |
uint8_t id = 0xFFu;
|
406 |
|
407 |
msg_t res = global.memory.getBoardId(&id); |
408 |
|
409 |
if (res != global.memory.OK)
|
410 |
chprintf(chp, "Get Board ID: FAIL\n");
|
411 |
else
|
412 |
chprintf(chp, "Get Board ID: %u\n", id);
|
413 |
} |
414 |
|
415 |
void shellRequestSetBoardId(BaseSequentialStream *chp, int argc, char *argv[]) { |
416 |
chprintf(chp, "shellRequestSetBoardId\n");
|
417 |
|
418 |
if (argc == 0) { |
419 |
chprintf(chp, "Usage: %s\n","set_board_id <idx>"); |
420 |
} else {
|
421 |
msg_t res = global.memory.setBoardId(atoi(argv[0]));
|
422 |
if (res != global.memory.OK)
|
423 |
chprintf(chp, "Set Board ID: FAIL\n");
|
424 |
else
|
425 |
chprintf(chp, "Set Board ID: OK\n");
|
426 |
} |
427 |
} |
428 |
|
429 |
void shellRequestResetCalibrationConstants(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
430 |
chprintf(chp, "shellRequestResetCalibrationConstants\n");
|
431 |
chprintf(chp, "Setting Ed=1.0f, Eb=1.0f\n");
|
432 |
msg_t res; |
433 |
|
434 |
res = global.memory.setEd(1.0f); |
435 |
if (res != global.memory.OK)
|
436 |
chprintf(chp, "Set Ed: FAIL\n");
|
437 |
else
|
438 |
chprintf(chp, "Set Ed: OK\n");
|
439 |
|
440 |
res = global.memory.setEb(1.0f); |
441 |
if (res != global.memory.OK)
|
442 |
chprintf(chp, "Set Eb: FAIL\n");
|
443 |
else
|
444 |
chprintf(chp, "Set Eb: OK\n");
|
445 |
} |
446 |
|
447 |
void shellRequestGetCalibrationConstants(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
448 |
chprintf(chp, "shellRequestGetCalibrationConstants\n");
|
449 |
msg_t res; |
450 |
float Ed, Eb;
|
451 |
|
452 |
res = global.memory.getEd(&Ed); |
453 |
if (res != global.memory.OK)
|
454 |
chprintf(chp, "Get Ed: FAIL\n");
|
455 |
else
|
456 |
chprintf(chp, "Get Ed: OK \t Ed=%f\n", Ed);
|
457 |
|
458 |
res = global.memory.getEb(&Eb); |
459 |
if (res != global.memory.OK)
|
460 |
chprintf(chp, "Get Eb: FAIL\n");
|
461 |
else
|
462 |
chprintf(chp, "Get Eb: OK \t Eb=%f\n", Eb);
|
463 |
} |
464 |
|
465 |
void shellRequestSetCalibrationConstants(BaseSequentialStream *chp, int argc, char *argv[]) { |
466 |
chprintf(chp, "shellRequestSetCalibrationConstants\n");
|
467 |
msg_t res; |
468 |
|
469 |
if (argc != 3) { |
470 |
chprintf(chp, "Usage: %s\n","set_Ed_Eb <Ed> <Eb> <Write To Eeprom ? 1 : 0>"); |
471 |
chprintf(chp, "(Call with floating point values for Ed and Eb values and write condition):\n");
|
472 |
return;
|
473 |
} |
474 |
// Get the write condition
|
475 |
const float Ed = atof(argv[0]); |
476 |
const float Eb = atof(argv[1]); |
477 |
bool_t writeToMemory = atoi(argv[2]) == 1 ? true : false; |
478 |
|
479 |
res = global.motorcontrol.setWheelDiameterCorrectionFactor(Ed, writeToMemory); |
480 |
if (res != global.memory.OK)
|
481 |
chprintf(chp, "Set Ed: FAIL\n");
|
482 |
else
|
483 |
chprintf(chp, "Set Ed: OK \t Ed=%f\n", Ed);
|
484 |
|
485 |
res = global.motorcontrol.setActualWheelBaseDistance(Eb, writeToMemory); |
486 |
if (res != global.memory.OK)
|
487 |
chprintf(chp, "Set Eb: FAIL\n");
|
488 |
else
|
489 |
chprintf(chp, "Set Eb: OK \t Ed=%f\n", Eb);
|
490 |
} |
491 |
|
492 |
void shellRequestGetVcnl(BaseSequentialStream *chp, int argc, char *argv[]) { |
493 |
chprintf(chp, "shellRequestGetVcnl\n");
|
494 |
// Print the sensor information
|
495 |
if (argc != 1) { |
496 |
chprintf(chp, "Usage: %s\n","get_vcnl <rep>"); |
497 |
return;
|
498 |
} |
499 |
for (int32_t rep = 0x00; rep < atoi(argv[0]); ++rep) { |
500 |
for (uint8_t idx = 0x00; idx < global.vcnl4020.size(); idx++) { |
501 |
chprintf(chp, "%d: Ambi %d\tProx raw %d\tProx scaled %d\n", idx, global.vcnl4020[idx].getAmbientLight(), global.vcnl4020[idx].getProximity(), global.vcnl4020[idx].getProximityScaledWoOffset());
|
502 |
} |
503 |
chprintf(chp, "\n\n");
|
504 |
BaseThread::sleep(MS2ST(250));
|
505 |
} |
506 |
} |
507 |
|
508 |
void shellRequestSetVcnlOffset(BaseSequentialStream *chp, int argc, char *argv[]) { |
509 |
chprintf(chp, "shellRequestSetVcnlOffset\n");
|
510 |
if (argc != 2) { |
511 |
chprintf(chp, "Usage: %s\n","set_vcnl <idx> <offset>"); |
512 |
return;
|
513 |
} |
514 |
|
515 |
uint8_t vcnlIdx = static_cast<uint8_t>(atoi(argv[0])); |
516 |
uint16_t vcnlOffset = static_cast<uint16_t>(atoi(argv[1])); |
517 |
|
518 |
if (vcnlIdx >= global.vcnl4020.size()) {
|
519 |
chprintf(chp, "Wrong VCNL index: Choose [0 .. %d]\n", global.vcnl4020.size()-1); |
520 |
return;
|
521 |
} |
522 |
|
523 |
msg_t res = global.memory.setVcnl4020Offset(vcnlOffset, vcnlIdx); |
524 |
if (res != global.memory.OK) {
|
525 |
chprintf(chp, "Set Offset: FAIL\n");
|
526 |
} else {
|
527 |
chprintf(chp, "Set Offset: OK\n");
|
528 |
global.vcnl4020[vcnlIdx].setProximityOffset(vcnlOffset); |
529 |
} |
530 |
} |
531 |
|
532 |
void shellRequestResetVcnlOffset(BaseSequentialStream *chp, int argc, char *argv[]) { |
533 |
msg_t res = global.memory.OK; |
534 |
for (uint8_t idx = 0; idx < 4; ++idx) { |
535 |
msg_t r = global.memory.setVcnl4020Offset(0, idx);
|
536 |
if (r == global.memory.OK) {
|
537 |
global.vcnl4020[idx].setProximityOffset(0);
|
538 |
} else {
|
539 |
chprintf(chp, "Reset Offset %u: FAIL\n", idx);
|
540 |
res = r; |
541 |
} |
542 |
} |
543 |
|
544 |
if (res == global.memory.OK) {
|
545 |
chprintf(chp, "Reset Offset: DONE\n");
|
546 |
} |
547 |
|
548 |
return;
|
549 |
} |
550 |
|
551 |
void shellRequestGetVcnlOffset(BaseSequentialStream *chp, int argc, char *argv[]) { |
552 |
chprintf(chp, "shellRequestGetVcnlOffset\n");
|
553 |
if (argc != 1) { |
554 |
chprintf(chp, "Call with decimal numbers: get_vcnl <idx>\n");
|
555 |
return;
|
556 |
} |
557 |
|
558 |
uint8_t vcnlIdx = static_cast<uint8_t>(atoi(argv[0])); |
559 |
|
560 |
if (vcnlIdx >= global.vcnl4020.size()) {
|
561 |
chprintf(chp, "Wrong VCNL index: Choose [0 .. %d]\n", global.vcnl4020.size()-1); |
562 |
return;
|
563 |
} |
564 |
|
565 |
uint16_t vcnlOffset; |
566 |
msg_t res = global.memory.getVcnl4020Offset(&vcnlOffset, vcnlIdx); |
567 |
if (res != global.memory.OK) {
|
568 |
chprintf(chp, "Get Offset: FAIL\n");
|
569 |
} else {
|
570 |
chprintf(chp, "Get Offset: OK \t Offset=%d\n", vcnlOffset);
|
571 |
} |
572 |
} |
573 |
|
574 |
void shellRequestCalib(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
575 |
chprintf(chp, "shellRequestCalib\n");
|
576 |
global.robot.calibrate(); |
577 |
} |
578 |
|
579 |
void shellRequestGetRobotId(BaseSequentialStream *chp, int __unused argc, char __unused *argv[]) { |
580 |
chprintf(chp, "shellRequestGetRobotId\n");
|
581 |
chprintf(chp, "Robot ID: %u\n", global.robot.getRobotID());
|
582 |
if (global.robot.getRobotID() == 0) |
583 |
chprintf(chp, "Warning: The board ID seems to be uninitialized.\n");
|
584 |
} |
585 |
|
586 |
void shellRequestGetSystemLoad(BaseSequentialStream *chp, int argc, char *argv[]) { |
587 |
chprintf(chp, "shellRequestGetSystemLoad\n");
|
588 |
uint8_t seconds = 1;
|
589 |
if (argc >= 1) { |
590 |
seconds = atoi(argv[0]);
|
591 |
} |
592 |
chprintf(chp, "measuring CPU load for %u %s...\n", seconds, (seconds>1)? "seconds" : "second"); |
593 |
|
594 |
const systime_t before = chThdGetTicks(chSysGetIdleThread());
|
595 |
BaseThread::sleep(S2ST(seconds)); |
596 |
const systime_t after = chThdGetTicks(chSysGetIdleThread());
|
597 |
const float usage = 1.0f - (float(after - before) / float(seconds * CH_FREQUENCY)); |
598 |
|
599 |
chprintf(chp, "CPU load: %3.2f%%\n", usage * 100); |
600 |
const uint32_t memory_total = 0x10000; |
601 |
const uint32_t memory_load = memory_total - chCoreStatus();
|
602 |
chprintf(chp, "RAM load: %3.2f%% (%u / %u Byte)\n", float(memory_load)/float(memory_total) * 100, memory_load, memory_total); |
603 |
} |
604 |
|
605 |
void shellSwitchBoardCmd(BaseSequentialStream *chp, int argc, char *argv[]) { |
606 |
if (argc != 1) { |
607 |
chprintf(chp, "Call with decimal numbers: shell_board <idx>\n");
|
608 |
return;
|
609 |
} |
610 |
uint8_t boardIdx = static_cast<uint8_t>(atoi(argv[0])); |
611 |
|
612 |
chprintf(chp, "shellSwitchBoardCmd\n");
|
613 |
global.sercanmux1.sendSwitchCmd(boardIdx); |
614 |
} |
615 |
|
616 |
void shellRequestGetBootloaderInfo(BaseSequentialStream* chp, int argc, char *argv[]) { |
617 |
// check the magic number
|
618 |
switch (*((uint32_t*)(BL_CALLBACK_TABLE_ADDR))) {
|
619 |
case (('A'<<24) | ('-'<<16) | ('B'<<8) | ('L'<<0)): |
620 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader %u.%u.%u\n",
|
621 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->major, |
622 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->minor, |
623 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->patch); |
624 |
break;
|
625 |
|
626 |
case BL_MAGIC_NUMBER:
|
627 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader %u.%u.%u\n",
|
628 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))), |
629 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))), |
630 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))); |
631 |
break;
|
632 |
|
633 |
default:
|
634 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader incompatible\n");
|
635 |
break;
|
636 |
} |
637 |
|
638 |
return;
|
639 |
} |
640 |
|
641 |
void shellRequestMotorDrive(BaseSequentialStream *chp, int argc, char *argv[]) { |
642 |
types::kinematic tmp; |
643 |
tmp.w_z = 0;
|
644 |
tmp.x = 0;
|
645 |
if (argc == 1){ |
646 |
chprintf(chp, "Set speed to %i um/s \n", atoi(argv[0])); |
647 |
tmp.x = atoi(argv[0]);
|
648 |
} else {
|
649 |
if(argc == 2){ |
650 |
chprintf(chp, "Set speed to %i \n um/s", atoi(argv[0])); |
651 |
chprintf(chp, "Set angular speed to %i \n urad/s", atoi(argv[1])); |
652 |
tmp.x = atoi(argv[0]);
|
653 |
tmp.w_z= atoi(argv[1]);
|
654 |
} else {
|
655 |
chprintf(chp, "Wrong number of parameters given (%i), stopping robot \n", argc);
|
656 |
} |
657 |
} |
658 |
|
659 |
global.motorcontrol.setTargetSpeed(tmp); |
660 |
return;
|
661 |
} |
662 |
|
663 |
void shellRequestMotorStop(BaseSequentialStream *chp, int argc, char *argv[]) { |
664 |
types::kinematic tmp; |
665 |
tmp.x = 0;
|
666 |
tmp.w_z = 0;
|
667 |
|
668 |
global.motorcontrol.setTargetSpeed(tmp); |
669 |
|
670 |
chprintf(chp, "stop");
|
671 |
return;
|
672 |
} |
673 |
|
674 |
void shellRequestMotorCalibrate(BaseSequentialStream *chp, int argc, char *argv[]) { |
675 |
global.motorcontrol.resetGains(); |
676 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "motor calibration starts in five seconds...\n");
|
677 |
BaseThread::sleep(MS2ST(5000));
|
678 |
global.motorcontrol.isCalibrating = true;
|
679 |
|
680 |
return;
|
681 |
} |
682 |
|
683 |
void shellRequestMotorGetGains(BaseSequentialStream *chp, int argc, char *argv[]){ |
684 |
global.motorcontrol.printGains(); |
685 |
|
686 |
return;
|
687 |
} |
688 |
|
689 |
void shellRequestMotorResetGains(BaseSequentialStream *chp, int argc, char *argv[]) { |
690 |
global.motorcontrol.resetGains();; |
691 |
|
692 |
return;
|
693 |
} |
694 |
|
695 |
|
696 |
/**
|
697 |
* Calibrate the thresholds for left and right sensor to get the maximum threshold and to
|
698 |
* be able to detect the correction direction.
|
699 |
* In this case it is expected that the FL-Sensor sould be in the white part of the edge and the FR-Sensor in the black one.
|
700 |
*
|
701 |
* Note: invert the threshs to drive on the other edge.
|
702 |
*
|
703 |
* */
|
704 |
void calibrateLineSensores(BaseSequentialStream *chp, int argc, char *argv[]) { |
705 |
// int vcnl4020AmbientLight[4];
|
706 |
int vcnl4020Proximity[4]; |
707 |
int rounds = 1; |
708 |
int proxyL = 0; |
709 |
int proxyR = 0; |
710 |
int maxDelta = 0; |
711 |
int sensorL = 0; |
712 |
int sensorR = 0; |
713 |
|
714 |
if (argc == 1){ |
715 |
chprintf(chp, "Test %i rounds \n", atoi(argv[0])); |
716 |
rounds = atoi(argv[0]);
|
717 |
|
718 |
}else{
|
719 |
chprintf(chp, "Usage: calbrate_line_sensors [1,n]\nThis will calibrate the thresholds for the left and right sensor\naccording to the maximum delta value recorded.\n");
|
720 |
return;
|
721 |
} |
722 |
for (uint8_t led = 0; led < 8; ++led) { |
723 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
724 |
} |
725 |
|
726 |
for (int j = 0; j < rounds; j++) { |
727 |
for (int i = 0; i < 4; i++) { |
728 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
729 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
730 |
} |
731 |
global.robot.setLightColor(j % 8, Color(Color::BLACK));
|
732 |
global.robot.setLightColor(j+1 % 8, Color(Color::WHITE)); |
733 |
int delta = abs(vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT]
|
734 |
- vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT]); |
735 |
// Update proximity thresh
|
736 |
if (delta > maxDelta) {
|
737 |
for (uint8_t led = 0; led < 8; ++led) { |
738 |
global.robot.setLightColor(led, Color(Color::GREEN)); |
739 |
} |
740 |
maxDelta = delta; |
741 |
proxyL = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT]; |
742 |
proxyR = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT]; |
743 |
} |
744 |
sensorL += global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
745 |
sensorR += global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
746 |
|
747 |
// if (vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT] > proxyR && vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] > proxyL ){
|
748 |
// delta *= -1;
|
749 |
// }
|
750 |
|
751 |
chprintf(chp,"FL: 0x%x, FR: 0x%x, Delta: %d, ProxyL: %x, ProxyR: %x, MaxDelta: %d\n",
|
752 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
753 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], |
754 |
delta, |
755 |
proxyL, |
756 |
proxyR, |
757 |
maxDelta); |
758 |
// sleep(CAN::UPDATE_PERIOD);
|
759 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
760 |
} |
761 |
|
762 |
|
763 |
global.threshProxyL = sensorL / rounds; |
764 |
global.threshProxyR = sensorR / rounds; |
765 |
chprintf(chp,"Thresh FL: %d, FR: %d\n", global.threshProxyL, global.threshProxyR);
|
766 |
return;
|
767 |
} |
768 |
|
769 |
|
770 |
|
771 |
void proxySensorData(BaseSequentialStream *chp, int argc, char *argv[]) { |
772 |
// uint16_t vcnl4020AmbientLight[4];
|
773 |
uint16_t vcnl4020Proximity[4];
|
774 |
uint16_t rounds = 1;
|
775 |
// uint16_t proxyL = global.threshProxyL;
|
776 |
// uint16_t proxyR = global.threshProxyR;
|
777 |
// uint16_t maxDelta = 0;
|
778 |
|
779 |
// int sensorL = 0;
|
780 |
// int sensorR = 0;
|
781 |
if (argc == 1){ |
782 |
chprintf(chp, "Test %i rounds \n", atoi(argv[0])); |
783 |
rounds = atoi(argv[0]);
|
784 |
|
785 |
} |
786 |
global.motorcontrol.getGains(&global.motorConfigGains); |
787 |
global.motorcontrol.setGains(&global.stopGains); |
788 |
|
789 |
for (int j = 0; j < rounds; j++) { |
790 |
for (int i = 0; i < 4; i++) { |
791 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
792 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
793 |
} |
794 |
|
795 |
uint16_t delta = (vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] |
796 |
- vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT]); |
797 |
// // Update proximity thresh
|
798 |
// if (delta > maxDelta) {
|
799 |
// maxDelta = delta;
|
800 |
// proxyL = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT];
|
801 |
// proxyR = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT];
|
802 |
// }
|
803 |
|
804 |
// if (vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT] > proxyR && vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] > proxyL ){
|
805 |
// delta *= -1;
|
806 |
// }
|
807 |
|
808 |
chprintf(chp,"WL:%d,FL:%d,FR:%d,WR:%d,Delta:%d\n",
|
809 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], |
810 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
811 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], |
812 |
vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], |
813 |
delta); |
814 |
// sleep(CAN::UPDATE_PERIOD);
|
815 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
816 |
} |
817 |
global.motorcontrol.setGains(&global.motorConfigGains); |
818 |
// chprintf(chp,"Summary: MaxDelta: %d, FL: %x, FR: %d\n", maxDelta, proxyL, proxyR);
|
819 |
return;
|
820 |
} |
821 |
|
822 |
// Either 0 to disable record or > 0 to enable it
|
823 |
void setRecord(BaseSequentialStream *chp, int argc, char *argv[]){ |
824 |
if (argc == 1){ |
825 |
chprintf(chp, "Set recording to %d\n", atoi(argv[0])); |
826 |
global.enableRecord = atoi(argv[0]);
|
827 |
} |
828 |
} |
829 |
|
830 |
|
831 |
void zieglerMeth2(BaseSequentialStream *chp, int argc, char *argv[]) { |
832 |
// int vcnl4020AmbientLight[4];
|
833 |
// int vcnl4020Proximity[4];
|
834 |
int rpmSpeed[2] = {0}; |
835 |
int steps = 0; |
836 |
// int proxyL = global.threshProxyL;
|
837 |
// int proxyR = global.threshProxyR;
|
838 |
int maxDelta = 0; |
839 |
float KCrit = 0.0f; |
840 |
global.sensSamples = 0;
|
841 |
global.maxDist.error = 0;
|
842 |
LineFollow lf(&global); |
843 |
int led = 0; |
844 |
|
845 |
if (argc == 2){ |
846 |
chprintf(chp, "KCrti %f\n", atof(argv[0])); |
847 |
chprintf(chp, "Steps %i\n", atoi(argv[1])); |
848 |
KCrit = atof(argv[0]);
|
849 |
steps = atoi(argv[1]);
|
850 |
} else if (argc == 3){ |
851 |
chprintf(chp, "KCrti %f\n", atof(argv[0])); |
852 |
chprintf(chp, "Steps %i\n", atoi(argv[1])); |
853 |
KCrit = atof(argv[0]);
|
854 |
steps = atoi(argv[1]);
|
855 |
global.forwardSpeed = atoi(argv[2]);
|
856 |
|
857 |
}else{
|
858 |
chprintf(chp, "Usage: dev_ziegler2 <K_crit> <steps> (<speed>)");
|
859 |
return;
|
860 |
} |
861 |
global.K_p = KCrit; |
862 |
for(led=0; led<8; led++){ |
863 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
864 |
} |
865 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Recodring starts in five seconds...\n");
|
866 |
BaseThread::sleep(MS2ST(5000));
|
867 |
// global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000);
|
868 |
int checkWhite = 0; |
869 |
int it_switch = steps / 2; |
870 |
// lf.setStrategie(LineFollowStrategie::MIDDLE);
|
871 |
for(int s=0; s < steps; s++){ |
872 |
|
873 |
checkWhite = lf.followLine(rpmSpeed); |
874 |
// chprintf(chp,"S:%d,",s);
|
875 |
// if(global.threshWhite)
|
876 |
// if(s < it_switch){
|
877 |
// lf.setStrategie(LineFollowStrategie::EDGE_LEFT);
|
878 |
// checkWhite = lf.followLine(rpmSpeed);
|
879 |
// }else{
|
880 |
// lf.setStrategie(LineFollowStrategie::EDGE_RIGHT);
|
881 |
// checkWhite = lf.followLine(rpmSpeed);
|
882 |
// }
|
883 |
if(checkWhite){
|
884 |
global.motorcontrol.setTargetRPM(0,0); |
885 |
for(led=0; led<8; led++){ |
886 |
global.robot.setLightColor(led, Color(Color::RED)); |
887 |
} |
888 |
}else{
|
889 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
890 |
} |
891 |
|
892 |
|
893 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
894 |
} |
895 |
|
896 |
global.motorcontrol.setTargetRPM(0,0); |
897 |
} |
898 |
|
899 |
|
900 |
void followLine(BaseSequentialStream *chp, int argc, char *argv[]){ |
901 |
int steps = 1000; |
902 |
int speed = 0; |
903 |
int strategy = 0; |
904 |
int led = 0; |
905 |
int checkWhite = 0; |
906 |
int rpmSpeed[2] = {0}; |
907 |
LineFollow lf(&global); |
908 |
if (argc == 1){ |
909 |
chprintf(chp, "%i steps \n", atoi(argv[0])); |
910 |
steps = atoi(argv[0]);
|
911 |
}else if (argc == 2){ |
912 |
steps = atoi(argv[0]);
|
913 |
speed = atoi(argv[1]);
|
914 |
}else if (argc == 3){ |
915 |
steps = atoi(argv[0]);
|
916 |
speed = atoi(argv[1]);
|
917 |
strategy = atoi(argv[2]);
|
918 |
}else{
|
919 |
chprintf(chp, "Use: followLine <steps> <speed> <strategy>\n");
|
920 |
return;
|
921 |
} |
922 |
global.forwardSpeed = speed; |
923 |
switch (strategy)
|
924 |
{ |
925 |
case 0: |
926 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_RIGHT); |
927 |
break;
|
928 |
case 1: |
929 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_LEFT); |
930 |
break;
|
931 |
case 2: |
932 |
lf.setStrategy(amiro::LineFollowStrategy::FUZZY); |
933 |
break;
|
934 |
default:
|
935 |
break;
|
936 |
} |
937 |
|
938 |
|
939 |
for(int s=0; s < steps; s++){ |
940 |
|
941 |
checkWhite = lf.followLine(rpmSpeed); |
942 |
if(checkWhite){
|
943 |
global.motorcontrol.setTargetRPM(0,0); |
944 |
for(led=0; led<8; led++){ |
945 |
global.robot.setLightColor(led, Color(Color::RED)); |
946 |
} |
947 |
}else{
|
948 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
949 |
} |
950 |
|
951 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
952 |
} |
953 |
|
954 |
global.motorcontrol.setTargetRPM(0,0); |
955 |
} |
956 |
|
957 |
|
958 |
void printMove(BaseSequentialStream *chp, int argc, char *argv[]){ |
959 |
|
960 |
for (int j=0; j<global.sensSamples;j++){ |
961 |
chprintf(chp,"FL:%d,FR:%d,Delta:%d,Error:%d\n",global.senseRec[j].FL, global.senseRec[j].FR, global.senseRec[j].delta, global.senseRec[j].error);
|
962 |
} |
963 |
chprintf(chp,"MaxDist: FL:%d,FR:%d,Delta:%d,Error:%d\n",global.maxDist.FL, global.maxDist.FR, global.maxDist.delta, global.maxDist.error);
|
964 |
|
965 |
|
966 |
} |
967 |
void freeGains(BaseSequentialStream *chp, int argc, char *argv[]){ |
968 |
if (global.resetProtect){
|
969 |
global.motorcontrol.getGains(&global.motorConfigGains); |
970 |
global.resetProtect = 0;
|
971 |
} |
972 |
|
973 |
global.motorcontrol.setGains(&global.stopGains); |
974 |
} |
975 |
|
976 |
|
977 |
void setGains(BaseSequentialStream *chp, int argc, char *argv[]){ |
978 |
if(!global.resetProtect){
|
979 |
global.motorcontrol.setGains(&global.motorConfigGains); |
980 |
global.resetProtect = 1;
|
981 |
} |
982 |
} |
983 |
void motorToggle(BaseSequentialStream *chp, int argc, char *argv[]){ |
984 |
global.odometry.resetPosition(); |
985 |
global.motorcontrol.toggleMotorEnable(); |
986 |
} |
987 |
|
988 |
|
989 |
void rotate(BaseSequentialStream *chp, int argc, char *argv[]){ |
990 |
int steps = 1000; |
991 |
int speed = 0; |
992 |
int strategy = 0; |
993 |
int led = 0; |
994 |
int checkWhite = 0; |
995 |
int rpmSpeed[2] = {0}; |
996 |
LineFollow lf(&global); |
997 |
if (argc == 1){ |
998 |
chprintf(chp, "%i steps \n", atoi(argv[0])); |
999 |
speed = atoi(argv[0]);
|
1000 |
}else if (argc == 2){ |
1001 |
speed = atoi(argv[0]);
|
1002 |
steps = atoi(argv[1]);
|
1003 |
}else{
|
1004 |
chprintf(chp, "Use: rotate <speed> <steps>\n");
|
1005 |
return;
|
1006 |
} |
1007 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Recodring starts in five seconds...\n");
|
1008 |
BaseThread::sleep(MS2ST(5000));
|
1009 |
// global.forwardSpeed = speed;
|
1010 |
// rpmSpeed[0] = -speed;
|
1011 |
// rpmSpeed[1] = speed;
|
1012 |
// global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000);
|
1013 |
// for(int s=0; s < steps; s++){
|
1014 |
// BaseThread::sleep(CAN::UPDATE_PERIOD);
|
1015 |
// }
|
1016 |
global.odometry.resetPosition(); |
1017 |
global.startPos = global.odometry.getPosition(); |
1018 |
global.distcontrol.setTargetPosition(0, 3141592, 5000); |
1019 |
BaseThread::sleep(MS2ST(11000));
|
1020 |
global.endPos = global.odometry.getPosition(); |
1021 |
// global.motorcontrol.setTargetRPM(0,0);
|
1022 |
} |
1023 |
|
1024 |
void setSpeed(int (&rpmSpeed)[2]){ |
1025 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
1026 |
} |
1027 |
|
1028 |
/**
|
1029 |
* Blocks as long as the position changes.
|
1030 |
*/
|
1031 |
void checkForMotion(){
|
1032 |
int motion = 1; |
1033 |
int led = 0; |
1034 |
types::position oldPos = global.odometry.getPosition(); |
1035 |
while(motion){
|
1036 |
BaseThread::sleep(500);
|
1037 |
types::position tmp = global.odometry.getPosition(); |
1038 |
motion = abs(oldPos.x - tmp.x)+ abs(oldPos.y - tmp.y)+abs(oldPos.z - tmp.z); |
1039 |
oldPos = tmp; |
1040 |
global.robot.setLightColor((led + 1) % 8, Color(Color::YELLOW)); |
1041 |
global.robot.setLightColor(led % 8, Color(Color::BLACK));
|
1042 |
led++; |
1043 |
} |
1044 |
} |
1045 |
|
1046 |
/**
|
1047 |
* Turns MotorControl off and checks if position remains stable.
|
1048 |
*/
|
1049 |
int checkDockingSuccess(){
|
1050 |
// global.motorcontrol.setTargetRPM(0,0);
|
1051 |
checkForMotion(); |
1052 |
int led = 0; |
1053 |
int success = 0; |
1054 |
global.odometry.resetPosition(); |
1055 |
types::position start = global.startPos = global.odometry.getPosition(); |
1056 |
global.motorcontrol.toggleMotorEnable(); |
1057 |
BaseThread::sleep(1000);
|
1058 |
types::position stop = global.endPos = global.odometry.getPosition(); |
1059 |
global.motorcontrol.toggleMotorEnable(); |
1060 |
// Amiro moved, docking was not successful
|
1061 |
if ((start.x + stop.x) || (start.y + stop.y)){
|
1062 |
for(led=0; led<8; led++){ |
1063 |
global.robot.setLightColor(led, Color(Color::RED)); |
1064 |
} |
1065 |
success = 0;
|
1066 |
}else{
|
1067 |
for(led=0; led<8; led++){ |
1068 |
global.robot.setLightColor(led, Color(Color::GREEN)); |
1069 |
} |
1070 |
success = 1;
|
1071 |
} |
1072 |
|
1073 |
BaseThread::sleep(500);
|
1074 |
for(led=0; led<8; led++){ |
1075 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
1076 |
} |
1077 |
return success;
|
1078 |
} |
1079 |
|
1080 |
/**
|
1081 |
* Switch to EDGE_LEFT line following and orientate for n steps along the line.
|
1082 |
*
|
1083 |
* @param lf current line following
|
1084 |
* @param steps steps to take for the correction (measured in CAN-update durations)
|
1085 |
*/
|
1086 |
void correctPosition(LineFollow &lf, int steps){ |
1087 |
int checkWhite = 0; |
1088 |
int rpmSpeed[2] = {0}; |
1089 |
lf.setStrategy(LineFollowStrategy::EDGE_LEFT); |
1090 |
for (int correction=0; correction<steps; correction++){ |
1091 |
checkWhite = lf.followLine(rpmSpeed); |
1092 |
setSpeed(rpmSpeed); |
1093 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
1094 |
} |
1095 |
} |
1096 |
|
1097 |
|
1098 |
|
1099 |
void followAndRotate(BaseSequentialStream *chp, int argc, char *argv[]){ |
1100 |
int steps = 10000; |
1101 |
int speed = 0; |
1102 |
int strategy = 0; |
1103 |
int led = 0; |
1104 |
int checkWhite = 0; |
1105 |
int rpmSpeed[2] = {0}; |
1106 |
int proxyWheelThresh = 20000; |
1107 |
LineFollow lf(&global); |
1108 |
if (argc == 1){ |
1109 |
chprintf(chp, "%i steps \n", atoi(argv[0])); |
1110 |
speed = atoi(argv[0]);
|
1111 |
}else if (argc == 2){ |
1112 |
speed = atoi(argv[0]);
|
1113 |
steps = atoi(argv[1]);
|
1114 |
}else{
|
1115 |
chprintf(chp, "Use: rotate <speed> <steps>\n");
|
1116 |
return;
|
1117 |
} |
1118 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Recodring starts in five seconds...\n");
|
1119 |
BaseThread::sleep(MS2ST(5000));
|
1120 |
global.forwardSpeed = speed; |
1121 |
|
1122 |
setSpeed(rpmSpeed); |
1123 |
|
1124 |
|
1125 |
for(int s=0; s < steps; s++){ |
1126 |
|
1127 |
int WL = global.vcnl4020[constants::DiWheelDrive::PROX_WHEEL_LEFT].getProximityScaledWoOffset();
|
1128 |
int WR = global.vcnl4020[constants::DiWheelDrive::PROX_WHEEL_LEFT].getProximityScaledWoOffset();
|
1129 |
if ((WL+WR) < proxyWheelThresh){
|
1130 |
global.motorcontrol.setTargetRPM(0,0); |
1131 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Hit Break!\n");
|
1132 |
if(lf.getStrategy() == LineFollowStrategy::DOCKING){
|
1133 |
// Check if Docking was successful
|
1134 |
if(checkDockingSuccess()){
|
1135 |
break;
|
1136 |
}else{
|
1137 |
correctPosition(lf, 250);
|
1138 |
lf.setStrategy(LineFollowStrategy::DOCKING); |
1139 |
// break;
|
1140 |
} |
1141 |
|
1142 |
}else{
|
1143 |
// global.motorcontrol.setTargetRPM(0,0);
|
1144 |
BaseThread::sleep(1000);
|
1145 |
// 180° Rotation
|
1146 |
global.distcontrol.setTargetPosition(0, 3141592, 10000); |
1147 |
// BaseThread::sleep(8000);
|
1148 |
checkForMotion(); |
1149 |
correctPosition(lf, 250);
|
1150 |
// break;
|
1151 |
lf.setStrategy(LineFollowStrategy::DOCKING); |
1152 |
|
1153 |
} |
1154 |
} |
1155 |
checkWhite = lf.followLine(rpmSpeed); |
1156 |
setSpeed(rpmSpeed); |
1157 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
1158 |
} |
1159 |
|
1160 |
|
1161 |
} |
1162 |
|
1163 |
void enableCharging(){
|
1164 |
global.ltc4412.enable(true);
|
1165 |
} |
1166 |
|
1167 |
void disableCharging(){
|
1168 |
global.ltc4412.enable(false);
|
1169 |
} |
1170 |
|
1171 |
|
1172 |
void setGlobalStrategy(BaseSequentialStream *chp, int argc, char *argv[]){ |
1173 |
if(argc == 1){ |
1174 |
|
1175 |
global.lfStrategy = atoi(argv[0]);
|
1176 |
} |
1177 |
} |
1178 |
|
1179 |
void getPosition(BaseSequentialStream *chp, int argc, char *argv[]){ |
1180 |
types::position pos = global.odometry.getPosition(); |
1181 |
chprintf(chp, "Start: Position X: %d, Y: %d, Rotation X: %d, Y: %d, Z: %d\n", global.startPos.x, global.startPos.y, global.startPos.f_x, global.startPos.f_y, global.startPos.f_z);
|
1182 |
chprintf(chp, "End: Position X: %d, Y: %d, Rotation X: %d, Y: %d, Z: %d\n", global.endPos.x, global.endPos.y, global.endPos.f_x, global.endPos.f_y, global.endPos.f_z);
|
1183 |
|
1184 |
if(argc == 1){ |
1185 |
for (int i=0; i<atoi(argv[0]);i++){ |
1186 |
types::position pos = global.odometry.getPosition(); |
1187 |
chprintf(chp, "End: Position X: %d, Y: %d, Rotation X: %d, Y: %d, Z: %d\n", pos.x, pos.y, pos.f_x, pos.f_y, pos.f_z);
|
1188 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
1189 |
} |
1190 |
} |
1191 |
} |
1192 |
|
1193 |
// TODO: Not wokring, either loading station has no power or logic not working
|
1194 |
void checkPower(BaseSequentialStream *chp, int argc, char *argv[]){ |
1195 |
int steps = 2000; |
1196 |
int led = 0; |
1197 |
enableCharging(); |
1198 |
for (int i=0; i<steps;i++){ |
1199 |
chprintf(chp, "%s Enable: %s\n", global.ltc4412.isPluggedIn() ? "y" : "n", global.ltc4412.isEnabled() ? "y2" : "n2"); |
1200 |
if(global.ltc4412.isPluggedIn()){
|
1201 |
// enableCharging();
|
1202 |
for(led=0; led<8; led++){ |
1203 |
global.robot.setLightColor(led, Color(Color::GREEN)); |
1204 |
} |
1205 |
}else{
|
1206 |
// disableCharging();
|
1207 |
for(led=0; led<8; led++){ |
1208 |
global.robot.setLightColor(led, Color(Color::RED)); |
1209 |
} |
1210 |
} |
1211 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
1212 |
} |
1213 |
disableCharging(); |
1214 |
for(led=0; led<8; led++){ |
1215 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
1216 |
} |
1217 |
} |
1218 |
|
1219 |
|
1220 |
static const ShellCommand commands[] = { |
1221 |
{"shutdown", shellRequestShutdown},
|
1222 |
{"wakeup", shellRequestWakeup},
|
1223 |
{"check", shellRequestCheck},
|
1224 |
{"reset_memory", shellRequestResetMemory},
|
1225 |
{"get_board_id", shellRequestGetBoardId},
|
1226 |
{"set_board_id", shellRequestSetBoardId},
|
1227 |
{"get_memory_data", shellRequestGetMemoryData},
|
1228 |
{"get_vcnl", shellRequestGetVcnl},
|
1229 |
{"calib_vcnl_offset", shellRequestCalib},
|
1230 |
{"set_vcnl_offset", shellRequestSetVcnlOffset},
|
1231 |
{"reset_vcnl_offset", shellRequestResetVcnlOffset},
|
1232 |
{"get_vcnl_offset", shellRequestGetVcnlOffset},
|
1233 |
{"reset_Ed_Eb", shellRequestResetCalibrationConstants},
|
1234 |
{"get_Ed_Eb", shellRequestGetCalibrationConstants},
|
1235 |
{"set_Ed_Eb", shellRequestSetCalibrationConstants},
|
1236 |
{"get_robot_id", shellRequestGetRobotId},
|
1237 |
{"get_system_load", shellRequestGetSystemLoad},
|
1238 |
{"set_lights", shellRequestSetLights},
|
1239 |
{"shell_board", shellSwitchBoardCmd},
|
1240 |
{"get_bootloader_info", shellRequestGetBootloaderInfo},
|
1241 |
{"motor_drive", shellRequestMotorDrive},
|
1242 |
{"motor_stop", shellRequestMotorStop},
|
1243 |
{"motor_calibrate", shellRequestMotorCalibrate},
|
1244 |
{"motor_getGains", shellRequestMotorGetGains},
|
1245 |
{"motor_deactivate", freeGains},
|
1246 |
{"motor_activate", setGains},
|
1247 |
{"motor_resetGains", shellRequestMotorResetGains},
|
1248 |
{"motorToggle", motorToggle},
|
1249 |
{"dev_proxi_sensor_data", proxySensorData},
|
1250 |
{"dev_ziegler2", zieglerMeth2},
|
1251 |
// TODO: Stop user process from execution to finish/force calibration before anything starts
|
1252 |
{"calibrate_line", calibrateLineSensores},
|
1253 |
// {"record_move", recordMove},
|
1254 |
{"print_record", printMove},
|
1255 |
{"setRecord", setRecord},
|
1256 |
{"followLine", followLine},
|
1257 |
{"rotate", rotate},
|
1258 |
{"followRotate", followAndRotate},
|
1259 |
{"getPos", getPosition},
|
1260 |
{"checkPower", checkPower},
|
1261 |
{"setStrategy", setGlobalStrategy},
|
1262 |
{NULL, NULL} |
1263 |
}; |
1264 |
|
1265 |
static const ShellConfig shell_cfg1 = { |
1266 |
(BaseSequentialStream *) &global.sercanmux1, |
1267 |
commands |
1268 |
}; |
1269 |
|
1270 |
void initPowermonitor(INA219::Driver &ina219, const float shuntResistance_O, const float maxExpectedCurrent_A, const uint16_t currentLsb_uA) |
1271 |
{ |
1272 |
INA219::CalibData calibData; |
1273 |
INA219::InitData initData; |
1274 |
|
1275 |
calibData.input.configuration.content.brng = INA219::Configuration::BRNG_16V; |
1276 |
calibData.input.configuration.content.pg = INA219::Configuration::PGA_40mV; |
1277 |
calibData.input.configuration.content.badc = INA219::Configuration::ADC_68100us; |
1278 |
calibData.input.configuration.content.sadc = INA219::Configuration::ADC_68100us; |
1279 |
calibData.input.configuration.content.mode = INA219::Configuration::MODE_ShuntBus_Continuous; |
1280 |
calibData.input.shunt_resistance_O = shuntResistance_O; |
1281 |
calibData.input.max_expected_current_A = maxExpectedCurrent_A; |
1282 |
calibData.input.current_lsb_uA = currentLsb_uA; |
1283 |
if (ina219.calibration(&calibData) != BaseSensor<>::SUCCESS)
|
1284 |
{ |
1285 |
chprintf((BaseSequentialStream*)&SD1, "WARNING: calibration of INA219 failed.\n");
|
1286 |
} |
1287 |
|
1288 |
initData.configuration.value = calibData.input.configuration.value; |
1289 |
initData.calibration = calibData.output.calibration_value; |
1290 |
initData.current_lsb_uA = calibData.output.current_lsb_uA; |
1291 |
if (ina219.init(&initData) != BaseSensor<>::SUCCESS)
|
1292 |
{ |
1293 |
chprintf((BaseSequentialStream*)&SD1, "WARNING: initialization of INA219 failed.\n");
|
1294 |
} |
1295 |
|
1296 |
if (calibData.input.current_lsb_uA != initData.current_lsb_uA)
|
1297 |
{ |
1298 |
chprintf((BaseSequentialStream*)&SD1, "NOTE: LSB for current measurement was limited when initializing INA219 (%u -> %u)", calibData.input.current_lsb_uA, initData.current_lsb_uA);
|
1299 |
} |
1300 |
|
1301 |
return;
|
1302 |
} |
1303 |
|
1304 |
/*
|
1305 |
* Application entry point.
|
1306 |
*/
|
1307 |
int main(void) { |
1308 |
|
1309 |
// int16_t accel;
|
1310 |
Thread *shelltp = NULL;
|
1311 |
|
1312 |
/*
|
1313 |
* System initializations.
|
1314 |
* - HAL initialization, this also initializes the configured device drivers
|
1315 |
* and performs the board-specific initializations.
|
1316 |
* - Kernel initialization, the main() function becomes a thread and the
|
1317 |
* RTOS is active.
|
1318 |
*/
|
1319 |
halInit(); |
1320 |
qeiInit(); |
1321 |
System::init(); |
1322 |
|
1323 |
// boardWakeup();
|
1324 |
// boardWriteIoPower(1);
|
1325 |
|
1326 |
/*
|
1327 |
* Activates the serial driver 2 using the driver default configuration.
|
1328 |
*/
|
1329 |
sdStart(&SD1, &global.sd1_config); |
1330 |
|
1331 |
chprintf((BaseSequentialStream*) &SD1, "\n");
|
1332 |
chprintf((BaseSequentialStream*) &SD1, BOARD_NAME " " BOARD_VERSION "\n"); |
1333 |
switch (*((uint32_t*)(BL_CALLBACK_TABLE_ADDR))) {
|
1334 |
case (('A'<<24) | ('-'<<16) | ('B'<<8) | ('L'<<0)): |
1335 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader %u.%u.%u\n",
|
1336 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->major, |
1337 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->minor, |
1338 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->patch); |
1339 |
break;
|
1340 |
|
1341 |
case BL_MAGIC_NUMBER:
|
1342 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader %u.%u.%u\n",
|
1343 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))), |
1344 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))), |
1345 |
*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))); |
1346 |
break;
|
1347 |
|
1348 |
default:
|
1349 |
chprintf((BaseSequentialStream*) &SD1, "Bootloader incompatible\n");
|
1350 |
break;
|
1351 |
} |
1352 |
chprintf((BaseSequentialStream*) &SD1, "ChibiOS " CH_KERNEL_VERSION "\n"); |
1353 |
// make sure that the info text is completetly printed
|
1354 |
BaseThread::sleep(10);
|
1355 |
|
1356 |
extStart(&EXTD1, &extcfg); |
1357 |
|
1358 |
/*
|
1359 |
* Wait for a certain amount of time, so that the PowerBoard can activate
|
1360 |
* the IO voltages for the I2C Bus
|
1361 |
*/
|
1362 |
BaseThread::sleep(MS2ST(2000));
|
1363 |
|
1364 |
boardClearI2CBus(GPIOB_COMPASS_SCL, GPIOB_COMPASS_SDA); |
1365 |
boardClearI2CBus(GPIOB_IR_SCL, GPIOB_IR_SDA); |
1366 |
|
1367 |
global.HW_I2C1.start(&global.i2c1_config); |
1368 |
global.HW_I2C2.start(&global.i2c2_config); |
1369 |
|
1370 |
global.memory.init(); |
1371 |
|
1372 |
uint8_t i = 0;
|
1373 |
if (global.memory.getBoardId(&i) == fileSystemIo::FileSystemIoBase::OK) {
|
1374 |
chprintf((BaseSequentialStream*) &SD1, "Board ID: %u\n", i);
|
1375 |
} else {
|
1376 |
chprintf((BaseSequentialStream*) &SD1, "Error reading board ID\n");
|
1377 |
} |
1378 |
chprintf((BaseSequentialStream*) &SD1, "\n");
|
1379 |
|
1380 |
initPowermonitor(global.ina219, 0.1f, 0.075f, 10); |
1381 |
|
1382 |
for (i = 0x00u; i < global.vcnl4020.size(); i++) { |
1383 |
uint16_t buffer; |
1384 |
global.memory.getVcnl4020Offset(&buffer,i); |
1385 |
global.vcnl4020[i].setProximityOffset(buffer); |
1386 |
global.vcnl4020[i].start(NORMALPRIO); |
1387 |
} |
1388 |
|
1389 |
global.ina219.start(NORMALPRIO); |
1390 |
|
1391 |
global.hmc5883l.start(NORMALPRIO + 8);
|
1392 |
|
1393 |
global.increments.start(); // Start the qei driver
|
1394 |
|
1395 |
// Start the three axes gyroscope
|
1396 |
global.l3g4200d.configure(&global.gyro_run_config); |
1397 |
global.l3g4200d.start(NORMALPRIO+5);
|
1398 |
|
1399 |
global.odometry.start(NORMALPRIO + 20);
|
1400 |
|
1401 |
global.robot.start(HIGHPRIO - 1);
|
1402 |
|
1403 |
global.motorcontrol.start(NORMALPRIO + 7);
|
1404 |
|
1405 |
global.distcontrol.start(NORMALPRIO + 9);
|
1406 |
|
1407 |
// Set target velocity
|
1408 |
types::kinematic velocity; |
1409 |
velocity.x = 0; // E.g. "100*1e3" equals "10 cm/s" |
1410 |
velocity.w_z = 0; // E.g. "2*1e6" equals "2 rad/s" |
1411 |
global.motorcontrol.setTargetSpeed(velocity); |
1412 |
|
1413 |
// Start the three axes linear accelerometer
|
1414 |
global.lis331dlh.configure(&global.accel_run_config); |
1415 |
global.lis331dlh.start(NORMALPRIO+4);
|
1416 |
|
1417 |
// Start the user thread
|
1418 |
global.userThread.start(NORMALPRIO); |
1419 |
|
1420 |
/* let the SYS_SYNC_N pin go, to signal that the initialization of the module is done */
|
1421 |
palWritePad(GPIOC, GPIOC_SYS_INT_N, PAL_HIGH); |
1422 |
|
1423 |
/* wait until all modules are done */
|
1424 |
while (palReadPad(GPIOC, GPIOC_SYS_INT_N) == PAL_LOW) {
|
1425 |
continue;
|
1426 |
} |
1427 |
|
1428 |
while (true) { |
1429 |
|
1430 |
if (!shelltp)
|
1431 |
shelltp = shellCreate(&shell_cfg1, THD_WA_SIZE(1024), NORMALPRIO);
|
1432 |
else if (chThdTerminated(shelltp)) { |
1433 |
chThdRelease(shelltp); /* Recovers memory of the previous shell. */
|
1434 |
shelltp = NULL; /* Triggers spawning of a new shell. */ |
1435 |
} |
1436 |
|
1437 |
// Let the LED just blink as an alive signal
|
1438 |
boardWriteLed(1);
|
1439 |
BaseThread::sleep(MS2ST(250));
|
1440 |
boardWriteLed(0);
|
1441 |
BaseThread::sleep(MS2ST(250));
|
1442 |
|
1443 |
if (shutdown_now != SHUTDOWN_NONE) {
|
1444 |
if ((*((uint32_t*)(BL_CALLBACK_TABLE_ADDR)) != (('A'<<24) | ('-'<<16) | ('B'<<8) | ('L'<<0))) && (*((uint32_t*)(BL_CALLBACK_TABLE_ADDR)) != BL_MAGIC_NUMBER)) { |
1445 |
chprintf((BaseSequentialStream*) &SD1, "ERROR: unable to shut down (bootloader deprecated).\n");
|
1446 |
shutdown_now = SHUTDOWN_NONE; |
1447 |
} else {
|
1448 |
uint32_t blCallbackPtrAddr = BL_CALLBACK_TABLE_ADDR; |
1449 |
// handle bootloader version 0.2.x
|
1450 |
if ((*((uint32_t*)(BL_CALLBACK_TABLE_ADDR)) == BL_MAGIC_NUMBER) &&
|
1451 |
(*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))) == 0 && *((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (2*4))) == 2)) { |
1452 |
switch (shutdown_now) {
|
1453 |
case SHUTDOWN_TRANSPORTATION:
|
1454 |
blCallbackPtrAddr += 6 * 4; |
1455 |
break;
|
1456 |
case SHUTDOWN_DEEPSLEEP:
|
1457 |
blCallbackPtrAddr += 5 * 4; |
1458 |
break;
|
1459 |
case SHUTDOWN_HIBERNATE:
|
1460 |
blCallbackPtrAddr += 4 * 4; |
1461 |
break;
|
1462 |
case SHUTDOWN_HANDLE_REQUEST:
|
1463 |
case SHUTDOWN_RESTART:
|
1464 |
blCallbackPtrAddr += 10 * 4; |
1465 |
break;
|
1466 |
default:
|
1467 |
blCallbackPtrAddr = 0;
|
1468 |
break;
|
1469 |
} |
1470 |
} |
1471 |
// handle bootloader version 0.3.x
|
1472 |
else if ((*((uint32_t*)(BL_CALLBACK_TABLE_ADDR)) == BL_MAGIC_NUMBER) && |
1473 |
(*((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (1*4))) == 0 && *((uint32_t*)(BL_CALLBACK_TABLE_ADDR + (2*4))) == 3)) { |
1474 |
switch (shutdown_now) {
|
1475 |
case SHUTDOWN_TRANSPORTATION:
|
1476 |
blCallbackPtrAddr += 6 * 4; |
1477 |
break;
|
1478 |
case SHUTDOWN_DEEPSLEEP:
|
1479 |
blCallbackPtrAddr += 5 * 4; |
1480 |
break;
|
1481 |
case SHUTDOWN_HIBERNATE:
|
1482 |
blCallbackPtrAddr += 4 * 4; |
1483 |
break;
|
1484 |
case SHUTDOWN_RESTART:
|
1485 |
blCallbackPtrAddr += 7 * 4; |
1486 |
break;
|
1487 |
case SHUTDOWN_HANDLE_REQUEST:
|
1488 |
blCallbackPtrAddr += 8 * 4; |
1489 |
break;
|
1490 |
default:
|
1491 |
blCallbackPtrAddr = 0;
|
1492 |
break;
|
1493 |
} |
1494 |
} |
1495 |
// handle bootloader version 1.0.x and 1.1.x
|
1496 |
else if ((*((uint32_t*)(BL_CALLBACK_TABLE_ADDR)) == (('A'<<24) | ('-'<<16) | ('B'<<8) | ('L'<<0))) && |
1497 |
((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->major == 1 && (((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->minor == 0 || ((blVersion_t*)(BL_CALLBACK_TABLE_ADDR + (1*4)))->minor == 1)) { |
1498 |
switch (shutdown_now) {
|
1499 |
case SHUTDOWN_TRANSPORTATION:
|
1500 |
blCallbackPtrAddr += 6 * 4; |
1501 |
break;
|
1502 |
case SHUTDOWN_DEEPSLEEP:
|
1503 |
blCallbackPtrAddr += 5 * 4; |
1504 |
break;
|
1505 |
case SHUTDOWN_HIBERNATE:
|
1506 |
blCallbackPtrAddr += 4 * 4; |
1507 |
break;
|
1508 |
case SHUTDOWN_RESTART:
|
1509 |
blCallbackPtrAddr += 7 * 4; |
1510 |
break;
|
1511 |
case SHUTDOWN_HANDLE_REQUEST:
|
1512 |
blCallbackPtrAddr += 8 * 4; |
1513 |
break;
|
1514 |
default:
|
1515 |
blCallbackPtrAddr = 0;
|
1516 |
break;
|
1517 |
} |
1518 |
} |
1519 |
|
1520 |
void (*blCallback)(void) = NULL; |
1521 |
if (blCallbackPtrAddr > BL_CALLBACK_TABLE_ADDR) {
|
1522 |
blCallback = (void (*)(void))(*((uint32_t*)blCallbackPtrAddr)); |
1523 |
|
1524 |
if (!blCallback) {
|
1525 |
chprintf((BaseSequentialStream*) &SD1, "ERROR: Requested shutdown not supported.\n");
|
1526 |
shutdown_now = SHUTDOWN_NONE; |
1527 |
} else {
|
1528 |
chprintf((BaseSequentialStream*)&SD1, "initiating shutdown sequence...\n");
|
1529 |
palWritePad(GPIOC, GPIOC_SYS_INT_N, PAL_LOW); |
1530 |
palWritePad(GPIOC, GPIOC_SYS_PD_N, PAL_LOW); |
1531 |
|
1532 |
chprintf((BaseSequentialStream*)&SD1, "stopping all threads and periphery...");
|
1533 |
systemShutdown(); |
1534 |
chprintf((BaseSequentialStream*)&SD1, "\tdone\n");
|
1535 |
BaseThread::sleep(MS2ST(10)); // sleep to print everything |
1536 |
|
1537 |
blCallback(); |
1538 |
} |
1539 |
|
1540 |
} else {
|
1541 |
chprintf((BaseSequentialStream*) &SD1, "ERROR: invalid shutdown requested (%u).\n", shutdown_now);
|
1542 |
shutdown_now = SHUTDOWN_NONE; |
1543 |
} |
1544 |
} |
1545 |
|
1546 |
// for (uint8_t i = LIS331DLH::AXIS_X; i <= LIS331DLH::AXIS_Z; i++) {
|
1547 |
// accel = lis331dlh.getAcceleration(i);
|
1548 |
// chprintf((BaseSequentialStream*) &SD1, "%c%04X ", accel < 0 ? '-' : '+', accel < 0 ? -accel : accel);
|
1549 |
// }
|
1550 |
//
|
1551 |
// chprintf((BaseSequentialStream*) &SD1, "\n");
|
1552 |
//
|
1553 |
// // Print out an alive signal
|
1554 |
// chprintf((BaseSequentialStream*) &SD1, ".");
|
1555 |
} |
1556 |
} |
1557 |
|
1558 |
return 0; |
1559 |
} |