amiro-os / devices / PowerManagement / userthread.cpp @ ba75ee1d
History | View | Annotate | Download (14.755 KB)
1 |
#include "userthread.h" |
---|---|
2 |
|
3 |
#include "global.hpp" |
4 |
#include <array> |
5 |
#include <chprintf.h> |
6 |
#include <cmath> |
7 |
|
8 |
using namespace amiro; |
9 |
|
10 |
extern Global global;
|
11 |
|
12 |
volatile UserThread::State current_state;
|
13 |
volatile UserThread::State next_state;
|
14 |
types::kinematic kinematic; |
15 |
|
16 |
namespace obstacle_avoidance {
|
17 |
|
18 |
uint16_t constexpr proxThresholdLow = 0x0000;
|
19 |
uint16_t constexpr proxThresholdHigh = 0x1000;
|
20 |
uint16_t constexpr proxRange = proxThresholdHigh - proxThresholdLow; |
21 |
|
22 |
std::array< std::array<float, 2>, 8> constexpr namMatrix = { |
23 |
/* x w_z */
|
24 |
std::array<float, 2>/* SSW */{ 0.00f, 0.00f}, |
25 |
std::array<float, 2>/* WSW */{ 0.25f, -0.25f}, |
26 |
std::array<float, 2>/* WNW */{-0.75f, -0.50f}, |
27 |
std::array<float, 2>/* NNW */{-0.75f, -1.00f}, |
28 |
std::array<float, 2>/* NNE */{-0.75f, 1.00f}, |
29 |
std::array<float, 2>/* ENE */{-0.75f, 0.50f}, |
30 |
std::array<float, 2>/* ESE */{ 0.25f, 0.25f}, |
31 |
std::array<float, 2>/* SSE */{ 0.00f, 0.00f} |
32 |
}; |
33 |
uint32_t constexpr baseTranslation = 100e3; // 2cm/s |
34 |
uint32_t constexpr baseRotation = 1e6; // 1rad/s |
35 |
types::kinematic constexpr defaultKinematic = { |
36 |
/* x [µm/s] */ baseTranslation,
|
37 |
/* y [µm/s] */ 0, |
38 |
/* z [µm/s] */ 0, |
39 |
/* w_x [µrad/s] */ 0, |
40 |
/* w_y [µrad/s] */ 0, |
41 |
/* w_z [µrad/s] */ 0 |
42 |
}; |
43 |
|
44 |
inline uint8_t ProxId2LedId(const uint8_t proxId) { |
45 |
return (proxId < 4) ? proxId+4 : proxId-4; |
46 |
} |
47 |
|
48 |
Color Prox2Color(const float prox) { |
49 |
float p = 0.0f; |
50 |
if (prox < 0.5f) { |
51 |
p = 2.0f * prox; |
52 |
return Color(0x00, p*0xFF, (1.0f-p)*0xFF); |
53 |
} else {
|
54 |
p = 2.0f * (prox - 0.5f); |
55 |
return Color(p*0xFF, (1.0f-p)*0xFF, 0x00); |
56 |
} |
57 |
} |
58 |
|
59 |
} /* namespace obstacle_avoidance */
|
60 |
|
61 |
namespace wii_steering {
|
62 |
|
63 |
BluetoothWiimote wiimote(&global.wt12, RX_TX); |
64 |
BluetoothSerial btserial(&global.wt12, RX_TX); |
65 |
|
66 |
float deadzone;
|
67 |
char bt_address[18] = {'\0'}; |
68 |
float wiimoteCalib[3] = {0.0f}; |
69 |
uint8_t principal_axis = 1;
|
70 |
int8_t axis_direction = -1;
|
71 |
|
72 |
uint32_t constexpr maxTranslation = 500e3; |
73 |
uint32_t constexpr maxRotation = 3.1415927f * 1000000.0f * 2.0f; |
74 |
|
75 |
} |
76 |
|
77 |
UserThread::UserThread() : |
78 |
chibios_rt::BaseStaticThread<USER_THREAD_STACK_SIZE>() |
79 |
{ |
80 |
} |
81 |
|
82 |
UserThread::~UserThread() |
83 |
{ |
84 |
} |
85 |
|
86 |
msg_t |
87 |
UserThread::main() |
88 |
{ |
89 |
/*
|
90 |
* initialize some variables
|
91 |
*/
|
92 |
current_state = IDLE; |
93 |
|
94 |
/*
|
95 |
* set all LEDs black (off)
|
96 |
*/
|
97 |
for (uint8_t led = 0; led < 8; ++led) { |
98 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
99 |
} |
100 |
|
101 |
/*
|
102 |
* thread loop
|
103 |
*/
|
104 |
while (!this->shouldTerminate()) { |
105 |
/*
|
106 |
* handle changes of the state
|
107 |
*/
|
108 |
if (next_state != current_state) {
|
109 |
switch (current_state) {
|
110 |
case IDLE:
|
111 |
{ |
112 |
if (next_state == OBSTACLE_AVOIDANCE) {
|
113 |
// set all LEDs to white for one second
|
114 |
for (uint8_t led = 0; led < 8; ++led) { |
115 |
global.robot.setLightColor(led, Color(Color::WHITE)); |
116 |
} |
117 |
this->sleep(MS2ST(1000)); |
118 |
for (uint8_t led = 0; led < 8; ++led) { |
119 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
120 |
} |
121 |
} |
122 |
/* if (this->next_state == WII_STEERING) */ else { |
123 |
// setup bluetooth
|
124 |
wii_steering::wiimote.bluetoothWiimoteListen(wii_steering::bt_address); |
125 |
wii_steering::btserial.bluetoothSerialListen("ALL");
|
126 |
|
127 |
// set LEDs: front = green; rear = red; sides = blue
|
128 |
global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::GREEN)); |
129 |
global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::GREEN)); |
130 |
global.robot.setLightColor(constants::LightRing::LED_SSW, Color(Color::RED)); |
131 |
global.robot.setLightColor(constants::LightRing::LED_SSE, Color(Color::RED)); |
132 |
global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::BLUE)); |
133 |
global.robot.setLightColor(constants::LightRing::LED_WSW, Color(Color::BLUE)); |
134 |
global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::BLUE)); |
135 |
global.robot.setLightColor(constants::LightRing::LED_ESE, Color(Color::BLUE)); |
136 |
|
137 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "press buttons '1' and '2' to connect\n");
|
138 |
} |
139 |
break;
|
140 |
} |
141 |
case OBSTACLE_AVOIDANCE:
|
142 |
{ |
143 |
if (next_state == IDLE) {
|
144 |
// stop the robot
|
145 |
kinematic = {0, 0, 0, 0, 0, 0}; |
146 |
global.robot.setTargetSpeed(kinematic); |
147 |
|
148 |
// set all LEDs to white for one second
|
149 |
for (uint8_t led = 0; led < 8; ++led) { |
150 |
global.robot.setLightColor(led, Color(Color::WHITE)); |
151 |
} |
152 |
this->sleep(MS2ST(1000)); |
153 |
for (uint8_t led = 0; led < 8; ++led) { |
154 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
155 |
} |
156 |
} |
157 |
/* if (this->next_state == WII_STEERING) */ else { |
158 |
// must turn off obstacle avoidance first
|
159 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "ERROR: turn off obstacle avoidance first!\n");
|
160 |
next_state = OBSTACLE_AVOIDANCE; |
161 |
} |
162 |
break;
|
163 |
} |
164 |
case WII_STEERING: {
|
165 |
if (next_state == IDLE) {
|
166 |
// stop the robot
|
167 |
kinematic = {0, 0, 0, 0, 0, 0}; |
168 |
global.robot.setTargetSpeed(kinematic); |
169 |
|
170 |
// disconnect from Wiimote controller
|
171 |
wii_steering::wiimote.bluetoothWiimoteDisconnect(wii_steering::bt_address); |
172 |
wii_steering::btserial.bluetoothSerialStop(); |
173 |
wii_steering::wiimote.bluetoothWiimoteStop(); |
174 |
|
175 |
// set all LEDs to black
|
176 |
for (uint8_t led = 0; led < 8; ++led) { |
177 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
178 |
} |
179 |
} |
180 |
/* if (this->next_state == OBSTACLE_AVOIDANCE) */ else { |
181 |
// must turn off wii steering first
|
182 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "ERROR: turn off wii steering first!\n");
|
183 |
next_state = WII_STEERING; |
184 |
} |
185 |
break;
|
186 |
} |
187 |
} |
188 |
// current_state = next_state;
|
189 |
current_state = IDLE; |
190 |
next_state = IDLE; |
191 |
} |
192 |
|
193 |
// sleep here so the loop is executed as quickly as possible
|
194 |
this->sleep(CAN::UPDATE_PERIOD);
|
195 |
|
196 |
/*
|
197 |
* exeute behaviour depending on the current state
|
198 |
*/
|
199 |
switch (current_state) {
|
200 |
case IDLE:
|
201 |
{ |
202 |
// read touch sensors
|
203 |
if (global.mpr121.getButtonStatus() == 0x0F) { |
204 |
next_state = OBSTACLE_AVOIDANCE; |
205 |
} |
206 |
break;
|
207 |
} |
208 |
case OBSTACLE_AVOIDANCE:
|
209 |
{ |
210 |
// read touch sensors
|
211 |
if (global.mpr121.getButtonStatus() == 0x0F) { |
212 |
next_state = IDLE; |
213 |
break;
|
214 |
} |
215 |
|
216 |
// initialize some variables
|
217 |
uint8_t sensor = 0;
|
218 |
std::array<uint16_t, 8> proximity;
|
219 |
std::array<float, 8> proxNormalized; |
220 |
float factor_x = 0.0f; |
221 |
float factor_wz = 0.0f; |
222 |
|
223 |
// read proximity values
|
224 |
for (sensor = 0; sensor < 8; ++sensor) { |
225 |
proximity[sensor] = global.vcnl4020[sensor].getProximityScaledWoOffset(); |
226 |
} |
227 |
|
228 |
// normalize proximity values
|
229 |
for (sensor = 0; sensor < 8; ++sensor) { |
230 |
register uint16_t prox = proximity[sensor];
|
231 |
// limit to high treshold
|
232 |
if (prox > obstacle_avoidance::proxThresholdHigh)
|
233 |
prox = obstacle_avoidance::proxThresholdHigh; |
234 |
// limit to low threshold
|
235 |
else if (prox < obstacle_avoidance::proxThresholdLow) |
236 |
prox = obstacle_avoidance::proxThresholdLow; |
237 |
// apply low threshold
|
238 |
prox -= obstacle_avoidance::proxThresholdLow; |
239 |
// normalize to [0, 1]
|
240 |
proxNormalized[sensor] = float(prox) / float(obstacle_avoidance::proxRange); |
241 |
} |
242 |
|
243 |
// map the sensor values to the top LEDs
|
244 |
for (sensor = 0; sensor < 8; ++sensor) { |
245 |
global.robot.setLightColor(obstacle_avoidance::ProxId2LedId(sensor), obstacle_avoidance::Prox2Color(proxNormalized[sensor])); |
246 |
} |
247 |
|
248 |
// evaluate NAM
|
249 |
for (sensor = 0; sensor < 8; ++sensor) { |
250 |
factor_x += proxNormalized[sensor] * obstacle_avoidance::namMatrix[sensor][0];
|
251 |
factor_wz += proxNormalized[sensor] * obstacle_avoidance::namMatrix[sensor][1];
|
252 |
} |
253 |
|
254 |
// set motor commands
|
255 |
kinematic = obstacle_avoidance::defaultKinematic; |
256 |
kinematic.x += (factor_x * obstacle_avoidance::baseTranslation) + 0.5f; |
257 |
kinematic.w_z += (factor_wz * obstacle_avoidance::baseRotation) + 0.5f; |
258 |
global.robot.setTargetSpeed(kinematic); |
259 |
|
260 |
break;
|
261 |
} |
262 |
case WII_STEERING:
|
263 |
{ |
264 |
// if not yet connected to the Wiimote controller
|
265 |
if (!wii_steering::wiimote.bluetoothWiimoteIsConnected()) {
|
266 |
// try to connect
|
267 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "connecting...\n");
|
268 |
wii_steering::wiimote.bluetoothWiimoteConnect(wii_steering::bt_address); |
269 |
|
270 |
if (wii_steering::wiimote.bluetoothWiimoteIsConnected()) {
|
271 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "connection established\n");
|
272 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\n");
|
273 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Wiimote control:\n");
|
274 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\tpress 'home' to calibrate\n");
|
275 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\thold 'A' to steer\n");
|
276 |
} |
277 |
} |
278 |
// steer AMiRo using the Wiimote controller like a joystick
|
279 |
else {
|
280 |
// initialize some variables
|
281 |
float wiimoteAcc[3] = {0.0f, 0.0f, 0.0f}; |
282 |
|
283 |
// get Wiimote accelerometer data
|
284 |
wiimoteAcc[0] = wii_steering::wiimote.getAccelerometer()->x_axis;
|
285 |
wiimoteAcc[1] = wii_steering::wiimote.getAccelerometer()->y_axis;
|
286 |
wiimoteAcc[2] = wii_steering::wiimote.getAccelerometer()->z_axis;
|
287 |
|
288 |
// calibrate accelerometer offset
|
289 |
if (wii_steering::wiimote.getButtons()->home) {
|
290 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "%f | %f | %f\n", wiimoteAcc[0], wiimoteAcc[1], wiimoteAcc[2]); |
291 |
|
292 |
// detect principal axis
|
293 |
if (std::fabs(wiimoteAcc[0]) > std::fabs(wiimoteAcc[1]) && std::fabs(wiimoteAcc[0]) > std::fabs(wiimoteAcc[2])) { |
294 |
wii_steering::principal_axis = 0;
|
295 |
} else if (std::fabs(wiimoteAcc[1]) > std::fabs(wiimoteAcc[0]) && std::fabs(wiimoteAcc[1]) > std::fabs(wiimoteAcc[2])) { |
296 |
wii_steering::principal_axis = 1;
|
297 |
} else if (std::fabs(wiimoteAcc[2]) > std::fabs(wiimoteAcc[0]) && std::fabs(wiimoteAcc[2]) > std::fabs(wiimoteAcc[1])) { |
298 |
wii_steering::principal_axis = 2;
|
299 |
} |
300 |
wii_steering::axis_direction = (wiimoteAcc[wii_steering::principal_axis] >= 0) ? 1 : -1; |
301 |
|
302 |
// get calibration offset
|
303 |
wii_steering::wiimoteCalib[0] = wiimoteAcc[0]; |
304 |
wii_steering::wiimoteCalib[1] = wiimoteAcc[1]; |
305 |
wii_steering::wiimoteCalib[2] = wiimoteAcc[2]; |
306 |
wii_steering::wiimoteCalib[wii_steering::principal_axis] += -100.0f * wii_steering::axis_direction; |
307 |
|
308 |
// print information
|
309 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "accelerometer calibrated:\n");
|
310 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\tprincipal axis: %c\n", (wii_steering::principal_axis == 0) ? 'X' : (wii_steering::principal_axis == 1) ? 'Y' : 'Z'); |
311 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\tX = %d\n", (int32_t)wii_steering::wiimoteCalib[0]); |
312 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\tY = %d\n", (int32_t)wii_steering::wiimoteCalib[1]); |
313 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "\tZ = %d\n", (int32_t)wii_steering::wiimoteCalib[2]); |
314 |
} |
315 |
|
316 |
for (uint8_t axis = 0; axis < 3; ++axis) { |
317 |
// apply calibration values
|
318 |
wiimoteAcc[axis] -= wii_steering::wiimoteCalib[axis]; |
319 |
|
320 |
// normalize to (-1, 1)
|
321 |
wiimoteAcc[axis] /= 100.0f; |
322 |
|
323 |
// limit to 1G
|
324 |
if (wiimoteAcc[axis] > 1.0f) { |
325 |
wiimoteAcc[axis] = 1.0f; |
326 |
} else if (wiimoteAcc[axis] < -1.0f) { |
327 |
wiimoteAcc[axis] = -1.0f; |
328 |
} |
329 |
|
330 |
// apply deadzone
|
331 |
if (std::fabs(wiimoteAcc[axis]) < wii_steering::deadzone) {
|
332 |
wiimoteAcc[axis] = 0.0f; |
333 |
} |
334 |
|
335 |
/*
|
336 |
* the value is now in (-1 .. -deazone, 0, deadzone .. 1)
|
337 |
* note the gaps [-deadzone .. 0] and [0 .. deadzone]
|
338 |
*/
|
339 |
|
340 |
// normalize (deadzone, 1) to (0, 1) and (-1, -deadzone) tpo (-1, 0)
|
341 |
if (wiimoteAcc[axis] > 0) { |
342 |
wiimoteAcc[axis] -= wii_steering::deadzone; |
343 |
} else if (wiimoteAcc[axis] < 0){ |
344 |
wiimoteAcc[axis] += wii_steering::deadzone; |
345 |
} |
346 |
wiimoteAcc[axis] *= (1.0f / (1.0f - wii_steering::deadzone)); |
347 |
} |
348 |
|
349 |
// only move when A is pressed
|
350 |
if (wii_steering::wiimote.getButtons()->A || wii_steering::wiimote.getButtons()->B) {
|
351 |
// set kinematic relaive to maximum speeds
|
352 |
switch (wii_steering::principal_axis) {
|
353 |
case 1: |
354 |
if (wii_steering::axis_direction == -1) { |
355 |
kinematic.x = wii_steering::maxTranslation * wiimoteAcc[2];
|
356 |
kinematic.w_z = wii_steering::maxRotation * wiimoteAcc[0] * ((wiimoteAcc[2] < 0.0f) ? 1.0f : -1.0f); |
357 |
break;
|
358 |
} |
359 |
case 2: |
360 |
if (wii_steering::axis_direction == 1) { |
361 |
kinematic.x = wii_steering::maxTranslation * wiimoteAcc[1];
|
362 |
kinematic.w_z = wii_steering::maxRotation * wiimoteAcc[0] * ((wiimoteAcc[1] < 0.0f) ? 1.0f : -1.0f); |
363 |
break;
|
364 |
} |
365 |
default:
|
366 |
kinematic = {0, 0, 0, 0, 0, 0}; |
367 |
break;
|
368 |
} |
369 |
} else {
|
370 |
kinematic = {0, 0, 0, 0, 0, 0}; |
371 |
} |
372 |
|
373 |
// set speed
|
374 |
global.robot.setTargetSpeed(kinematic); |
375 |
} |
376 |
|
377 |
break;
|
378 |
} |
379 |
} |
380 |
} |
381 |
|
382 |
// stop the robot
|
383 |
kinematic = {0, 0, 0, 0, 0, 0}; |
384 |
global.robot.setTargetSpeed(kinematic); |
385 |
|
386 |
return RDY_OK;
|
387 |
} |
388 |
|
389 |
void
|
390 |
UserThread::setNextState(const UserThread::State state)
|
391 |
{ |
392 |
next_state = state; |
393 |
return;
|
394 |
} |
395 |
|
396 |
UserThread::State |
397 |
UserThread::getCurrenState() const
|
398 |
{ |
399 |
return current_state;
|
400 |
} |
401 |
|
402 |
msg_t |
403 |
UserThread::setWiiAddress(const char* address) |
404 |
{ |
405 |
if (strlen(address) != 17) { |
406 |
return RDY_RESET;
|
407 |
} |
408 |
else {
|
409 |
strcpy(wii_steering::bt_address, address); |
410 |
return RDY_OK;
|
411 |
} |
412 |
} |
413 |
|
414 |
float
|
415 |
UserThread::setWiiDeadzone(const float deadzone) |
416 |
{ |
417 |
// check for negative value and limit to zero
|
418 |
float dz = (deadzone < 0.0f) ? 0.0f : deadzone; |
419 |
|
420 |
// if value is >1, range is assumed to be (0, 100)
|
421 |
if (dz > 1.0f) { |
422 |
// limit to 100
|
423 |
if (dz > 100.0f) { |
424 |
dz = 100.0f; |
425 |
} |
426 |
dz /= 100.0f; |
427 |
} |
428 |
|
429 |
// set value and return it
|
430 |
wii_steering::deadzone = dz; |
431 |
return dz;
|
432 |
} |
433 |
|