amiro-os / devices / DiWheelDrive / userthread.cpp @ bc91a128
History | View | Annotate | Download (14.781 KB)
1 | 58fe0e0b | Thomas Schöpping | #include "userthread.hpp" |
---|---|---|---|
2 | |||
3 | #include "global.hpp" |
||
4 | |||
5 | using namespace amiro; |
||
6 | |||
7 | extern Global global;
|
||
8 | |||
9 | // State machine states
|
||
10 | enum states : uint8_t {
|
||
11 | IDLE, |
||
12 | GO_RIGHT, |
||
13 | GO_STRAIGHT, |
||
14 | PARKING, |
||
15 | PARKING_RIGHT, |
||
16 | PARKING_LEFT, |
||
17 | GO_LEFT, |
||
18 | SPINNING_PARKING, |
||
19 | SPINNING |
||
20 | }; |
||
21 | |||
22 | // Policy
|
||
23 | states policy[] = { |
||
24 | GO_STRAIGHT, |
||
25 | GO_RIGHT, |
||
26 | GO_RIGHT, |
||
27 | GO_STRAIGHT, |
||
28 | GO_RIGHT, |
||
29 | GO_STRAIGHT, |
||
30 | GO_RIGHT, |
||
31 | GO_STRAIGHT, |
||
32 | GO_STRAIGHT, |
||
33 | GO_RIGHT, |
||
34 | GO_STRAIGHT, |
||
35 | GO_RIGHT, |
||
36 | GO_STRAIGHT |
||
37 | }; |
||
38 | |||
39 | // The different classes (or members) of color discrimination
|
||
40 | // BLACK is the line itselfe
|
||
41 | // GREY is the boarder between the line and the surface
|
||
42 | // WHITE is the common surface
|
||
43 | enum colorMember : uint8_t {
|
||
44 | BLACK=0,
|
||
45 | GREY=1,
|
||
46 | WHITE=2
|
||
47 | }; |
||
48 | |||
49 | // a buffer for the z-value of the accelerometer
|
||
50 | int16_t accel_z; |
||
51 | bool running;
|
||
52 | |||
53 | // Get some information about the policy
|
||
54 | const int sizeOfPolicy = sizeof(policy) / sizeof(states); |
||
55 | int policyCounter = 0; // Do not change this, it points to the beginning of the policy |
||
56 | |||
57 | // Different speed settings (all values in "rounds per minute")
|
||
58 | const int rpmForward[2] = {25,25}; |
||
59 | const int rpmSoftLeft[2] = {15,25}; |
||
60 | const int rpmHardLeft[2] = {10,25}; |
||
61 | const int rpmSoftRight[2] = {rpmSoftLeft[1],rpmSoftLeft[0]}; |
||
62 | const int rpmHardRight[2] = {rpmHardLeft[1],rpmHardLeft[0]}; |
||
63 | const int rpmTurnLeft[2] = {-10, 10}; |
||
64 | const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]}; |
||
65 | const int rpmHalt[2] = {0, 0}; |
||
66 | |||
67 | // Definition of the fuzzyfication function
|
||
68 | // | Membership
|
||
69 | // 1|_B__ G __W__
|
||
70 | // | \ /\ /
|
||
71 | // | \/ \/
|
||
72 | // |_____/\__/\______ Sensor values
|
||
73 | // SEE MATLAB SCRIPT "fuzzyRule.m" for adjusting the values
|
||
74 | // All values are "raw sensor values"
|
||
75 | /* Use these values for white ground surface (e.g. paper) */
|
||
76 | |||
77 | const int blackStartFalling = 0x1000; // Where the black curve starts falling |
||
78 | const int blackOff = 0x1800; // Where no more black is detected |
||
79 | b4885314 | Thomas Schöpping | const int whiteStartRising = 0x2800; // Where the white curve starts rising |
80 | const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
||
81 | 58fe0e0b | Thomas Schöpping | const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
82 | const int greyStartRising = blackStartFalling; // Where grey starts rising |
||
83 | const int greyOff = whiteOn; // Where grey is completely off again |
||
84 | |||
85 | /* Use these values for gray ground surfaces */
|
||
86 | /*
|
||
87 | const int blackStartFalling = 0x1000; // Where the black curve starts falling
|
||
88 | const int blackOff = 0x2800; // Where no more black is detected
|
||
89 | const int whiteStartRising = 0x4000; // Where the white curve starts rising
|
||
90 | const int whiteOn = 0x5000; // Where the white curve starts rising
|
||
91 | const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum
|
||
92 | const int greyStartRising = blackStartFalling; // Where grey starts rising
|
||
93 | const int greyOff = whiteOn; // Where grey is completely off again
|
||
94 | */
|
||
95 | |||
96 | int vcnl4020AmbientLight[4] = {0}; |
||
97 | int vcnl4020Proximity[4] = {0}; |
||
98 | |||
99 | // Border for the discrimination between black and white
|
||
100 | const int discrBlackWhite = 16000; // border in "raw sensor values" |
||
101 | // Discrimination between black and white (returns BLACK or WHITE)
|
||
102 | // The border was calculated by a MAP-decider
|
||
103 | colorMember discrimination(int value) {
|
||
104 | if (value < discrBlackWhite)
|
||
105 | return BLACK;
|
||
106 | else
|
||
107 | return WHITE;
|
||
108 | } |
||
109 | |||
110 | // Copy the speed from the source to the target array
|
||
111 | void copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
||
112 | target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
||
113 | target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
||
114 | } |
||
115 | |||
116 | // Fuzzyfication of the sensor values
|
||
117 | void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
||
118 | if (sensorValue < blackStartFalling ) {
|
||
119 | // Only black value
|
||
120 | fuzziedValue[BLACK] = 1.0f; |
||
121 | fuzziedValue[GREY] = 0.0f; |
||
122 | fuzziedValue[WHITE] = 0.0f; |
||
123 | } else if (sensorValue > whiteOn ) { |
||
124 | // Only white value
|
||
125 | fuzziedValue[BLACK] = 0.0f; |
||
126 | fuzziedValue[GREY] = 0.0f; |
||
127 | fuzziedValue[WHITE] = 1.0f; |
||
128 | } else if ( sensorValue < greyMax) { |
||
129 | // Some greyisch value between black and grey
|
||
130 | |||
131 | // Black is going down
|
||
132 | if ( sensorValue > blackOff) {
|
||
133 | fuzziedValue[BLACK] = 0.0f; |
||
134 | } else {
|
||
135 | fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
||
136 | } |
||
137 | |||
138 | // Grey is going up
|
||
139 | if ( sensorValue < greyStartRising) {
|
||
140 | fuzziedValue[GREY] = 0.0f; |
||
141 | } else {
|
||
142 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
||
143 | } |
||
144 | |||
145 | // White is absent
|
||
146 | fuzziedValue[WHITE] = 0.0f; |
||
147 | |||
148 | } else if ( sensorValue >= greyMax) { |
||
149 | // Some greyisch value between grey white
|
||
150 | |||
151 | // Black is absent
|
||
152 | fuzziedValue[BLACK] = 0.0f; |
||
153 | |||
154 | // Grey is going down
|
||
155 | if ( sensorValue < greyOff) {
|
||
156 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
||
157 | } else {
|
||
158 | fuzziedValue[GREY] = 0.0f; |
||
159 | } |
||
160 | |||
161 | // White is going up
|
||
162 | if ( sensorValue < whiteStartRising) {
|
||
163 | fuzziedValue[WHITE] = 0.0f; |
||
164 | } else {
|
||
165 | fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
||
166 | } |
||
167 | } |
||
168 | } |
||
169 | |||
170 | // Return the color, which has the highest fuzzy value
|
||
171 | colorMember getMember(float (&fuzzyValue)[3]) { |
||
172 | colorMember member; |
||
173 | |||
174 | if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
||
175 | if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
||
176 | member = BLACK; |
||
177 | else
|
||
178 | member = WHITE; |
||
179 | else
|
||
180 | if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
||
181 | member = GREY; |
||
182 | else
|
||
183 | member = WHITE; |
||
184 | |||
185 | return member;
|
||
186 | } |
||
187 | |||
188 | // Get a crisp output for the steering commands
|
||
189 | void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
||
190 | |||
191 | b4885314 | Thomas Schöpping | // all sensors are equal
|
192 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
||
193 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
||
194 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
||
195 | // something is wrong -> stop
|
||
196 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
197 | // both front sensor detect a line
|
||
198 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
||
199 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
||
200 | 58fe0e0b | Thomas Schöpping | // straight
|
201 | copyRpmSpeed(rpmForward, rpmFuzzyCtrl); |
||
202 | b4885314 | Thomas Schöpping | // exact one front sensor detects a line
|
203 | 58fe0e0b | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
204 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
||
205 | // soft correction
|
||
206 | b4885314 | Thomas Schöpping | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
207 | 58fe0e0b | Thomas Schöpping | // soft right
|
208 | copyRpmSpeed(rpmSoftRight, rpmFuzzyCtrl); |
||
209 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
210 | 58fe0e0b | Thomas Schöpping | // hard right
|
211 | copyRpmSpeed(rpmHardRight, rpmFuzzyCtrl); |
||
212 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
213 | 58fe0e0b | Thomas Schöpping | // soft left
|
214 | copyRpmSpeed(rpmSoftLeft, rpmFuzzyCtrl); |
||
215 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
216 | 58fe0e0b | Thomas Schöpping | // hard left
|
217 | copyRpmSpeed(rpmHardLeft, rpmFuzzyCtrl); |
||
218 | b4885314 | Thomas Schöpping | } |
219 | // both wheel sensors detect a line
|
||
220 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
||
221 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
222 | // something is wrong -> stop
|
||
223 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
224 | // exactly one wheel sensor detects a line
|
||
225 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
||
226 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
227 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
||
228 | // turn left
|
||
229 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
230 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
231 | // turn right
|
||
232 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
233 | } |
||
234 | // both front sensors may detect a line
|
||
235 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
||
236 | 58fe0e0b | Thomas Schöpping | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
237 | b4885314 | Thomas Schöpping | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
238 | // turn left
|
||
239 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
240 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
241 | 58fe0e0b | Thomas Schöpping | // turn right
|
242 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
243 | b4885314 | Thomas Schöpping | } |
244 | // exactly one front sensor may detect a line
|
||
245 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
||
246 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
||
247 | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
||
248 | 58fe0e0b | Thomas Schöpping | // turn left
|
249 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
250 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
251 | // turn right
|
||
252 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
253 | } |
||
254 | // both wheel sensors may detect a line
|
||
255 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
||
256 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
257 | // something is wrong -> stop
|
||
258 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
259 | // exactly one wheel sensor may detect a line
|
||
260 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
||
261 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
262 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
||
263 | 58fe0e0b | Thomas Schöpping | // turn left
|
264 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
265 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
266 | 58fe0e0b | Thomas Schöpping | // turn right
|
267 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
268 | b4885314 | Thomas Schöpping | } |
269 | // no sensor detects anything
|
||
270 | } else {
|
||
271 | // line is lost -> stop
|
||
272 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
273 | 58fe0e0b | Thomas Schöpping | } |
274 | |||
275 | return;
|
||
276 | } |
||
277 | |||
278 | Color memberToLed(colorMember member) { |
||
279 | switch (member) {
|
||
280 | case BLACK:
|
||
281 | return Color(Color::GREEN);
|
||
282 | case GREY:
|
||
283 | return Color(Color::YELLOW);
|
||
284 | case WHITE:
|
||
285 | return Color(Color::RED);
|
||
286 | default:
|
||
287 | return Color(Color::WHITE);
|
||
288 | } |
||
289 | } |
||
290 | |||
291 | // Line following by a fuzzy controler
|
||
292 | void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
||
293 | // FUZZYFICATION
|
||
294 | // First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
||
295 | float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
||
296 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
||
297 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
||
298 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
||
299 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
||
300 | |||
301 | // INFERENCE RULE DEFINITION
|
||
302 | // Get the member for each sensor
|
||
303 | colorMember member[4];
|
||
304 | member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
||
305 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
||
306 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
||
307 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
||
308 | |||
309 | // visualize sensors via LEDs
|
||
310 | global.robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
||
311 | global.robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
||
312 | global.robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
||
313 | global.robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
||
314 | |||
315 | // chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftFuzzyMemberValues[BLACK], leftFuzzyMemberValues[GREY], leftFuzzyMemberValues[WHITE]);
|
||
316 | // chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
||
317 | |||
318 | // DEFUZZYFICATION
|
||
319 | defuzzyfication(member, rpmFuzzyCtrl); |
||
320 | } |
||
321 | |||
322 | // Set the speed by the array
|
||
323 | void setRpmSpeed(const int (&rpmSpeed)[2]) { |
||
324 | global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
||
325 | } |
||
326 | |||
327 | // Get the next policy rule
|
||
328 | states getNextPolicy() { |
||
329 | // If the policy is over, start again
|
||
330 | if (policyCounter >= sizeOfPolicy)
|
||
331 | policyCounter = 3;
|
||
332 | |||
333 | return policy[policyCounter++];
|
||
334 | } |
||
335 | |||
336 | |||
337 | |||
338 | UserThread::UserThread() : |
||
339 | chibios_rt::BaseStaticThread<USER_THREAD_STACK_SIZE>() |
||
340 | { |
||
341 | } |
||
342 | |||
343 | UserThread::~UserThread() |
||
344 | { |
||
345 | } |
||
346 | |||
347 | msg_t |
||
348 | UserThread::main() |
||
349 | { |
||
350 | /*
|
||
351 | * SETUP
|
||
352 | */
|
||
353 | int rpmFuzzyCtrl[2] = {0}; |
||
354 | for (uint8_t led = 0; led < 8; ++led) { |
||
355 | global.robot.setLightColor(led, Color(Color::BLACK)); |
||
356 | } |
||
357 | running = false;
|
||
358 | |||
359 | /*
|
||
360 | * LOOP
|
||
361 | */
|
||
362 | while (!this->shouldTerminate()) |
||
363 | { |
||
364 | /*
|
||
365 | * read accelerometer z-value
|
||
366 | */
|
||
367 | accel_z = global.lis331dlh.getAccelerationForce(LIS331DLH::AXIS_Z); |
||
368 | |||
369 | /*
|
||
370 | * evaluate the accelerometer
|
||
371 | */
|
||
372 | if (accel_z < -900 /*-0.9g*/) { |
||
373 | if (running) {
|
||
374 | // stop the robot
|
||
375 | running = false;
|
||
376 | global.motorcontrol.setTargetRPM(0, 0); |
||
377 | } else {
|
||
378 | // start the robot
|
||
379 | running = true;
|
||
380 | } |
||
381 | // set the front LEDs to blue for one second
|
||
382 | global.robot.setLightColor(constants::LightRing::LED_SSW, Color(Color::BLACK)); |
||
383 | global.robot.setLightColor(constants::LightRing::LED_WSW, Color(Color::BLACK)); |
||
384 | global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::WHITE)); |
||
385 | global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::WHITE)); |
||
386 | global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::WHITE)); |
||
387 | global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::WHITE)); |
||
388 | global.robot.setLightColor(constants::LightRing::LED_ESE, Color(Color::BLACK)); |
||
389 | global.robot.setLightColor(constants::LightRing::LED_SSE, Color(Color::BLACK)); |
||
390 | this->sleep(MS2ST(1000)); |
||
391 | global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::BLACK)); |
||
392 | global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::BLACK)); |
||
393 | global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::BLACK)); |
||
394 | global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::BLACK)); |
||
395 | } |
||
396 | |||
397 | if (running) {
|
||
398 | // Read the proximity values
|
||
399 | for (int i = 0; i < 4; i++) { |
||
400 | vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
||
401 | vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
||
402 | } |
||
403 | |||
404 | // chprintf((BaseSequentialStream*) &SD1, "0x%04X 0x%04X 0x%04X 0x%04X\n",
|
||
405 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT],
|
||
406 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT],
|
||
407 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT],
|
||
408 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT]);
|
||
409 | |||
410 | lineFollowing(vcnl4020Proximity, rpmFuzzyCtrl); |
||
411 | setRpmSpeed(rpmFuzzyCtrl); |
||
412 | } |
||
413 | |||
414 | b4885314 | Thomas Schöpping | this->sleep(MS2ST(10)); |
415 | 58fe0e0b | Thomas Schöpping | } |
416 | |||
417 | return RDY_OK;
|
||
418 | } |