amiro-os / devices / DiWheelDrive / linefollow.cpp @ eef47799
History | View | Annotate | Download (15.173 KB)
| 1 |
#include "global.hpp" |
|---|---|
| 2 |
#include "linefollow.hpp" |
| 3 |
#include <cmath> |
| 4 |
|
| 5 |
|
| 6 |
|
| 7 |
LineFollow::LineFollow(Global *global){
|
| 8 |
this->global = global;
|
| 9 |
} |
| 10 |
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
|
| 11 |
this->global = global;
|
| 12 |
this-> strategy = strategy;
|
| 13 |
} |
| 14 |
|
| 15 |
|
| 16 |
int LineFollow::transitionError(int FL, int FR, int targetL, int targetR){ |
| 17 |
// global->robot.setLightColor(0, Color::RED);
|
| 18 |
// global->robot.setLightColor(7, Color::RED);
|
| 19 |
int error = 0; |
| 20 |
|
| 21 |
switch (this->strategy) |
| 22 |
{
|
| 23 |
case LineFollowStrategy::TRANSITION_R_L:
|
| 24 |
error = -(FL -targetL + FR - targetR + this->trans);
|
| 25 |
break;
|
| 26 |
case LineFollowStrategy::TRANSITION_L_R:
|
| 27 |
error = (FL -targetL + FR - targetR + this->trans);
|
| 28 |
break;
|
| 29 |
default:
|
| 30 |
break;
|
| 31 |
} |
| 32 |
this->trans += 400; |
| 33 |
if(FL+FR <= RAND_TRESH){
|
| 34 |
// global->robot.setLightColor(0, Color::GREEN);
|
| 35 |
// global->robot.setLightColor(7, Color::GREEN);
|
| 36 |
switch (this->strategy) |
| 37 |
{
|
| 38 |
case LineFollowStrategy::TRANSITION_R_L:
|
| 39 |
this->strategy = LineFollowStrategy::EDGE_LEFT;
|
| 40 |
break;
|
| 41 |
case LineFollowStrategy::TRANSITION_L_R:
|
| 42 |
this->strategy = LineFollowStrategy::EDGE_RIGHT;
|
| 43 |
break;
|
| 44 |
default:
|
| 45 |
break;
|
| 46 |
} |
| 47 |
this->trans = 0; |
| 48 |
} |
| 49 |
return error;
|
| 50 |
} |
| 51 |
|
| 52 |
/**
|
| 53 |
* Calculate the error from front proxi sensors and fixed threshold values for those sensors.
|
| 54 |
*/
|
| 55 |
int LineFollow::getError(){
|
| 56 |
// global->robot.setLightColor(3, Color::YELLOW);
|
| 57 |
// Get actual sensor data of both front sensors
|
| 58 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
| 59 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
| 60 |
int targetL = global->threshProxyL;
|
| 61 |
int targetR = global->threshProxyR;
|
| 62 |
int error = 0; |
| 63 |
switch (this->strategy) |
| 64 |
{
|
| 65 |
case LineFollowStrategy::EDGE_RIGHT:
|
| 66 |
error = -(FL -targetL + FR - targetR); |
| 67 |
break;
|
| 68 |
case LineFollowStrategy::EDGE_LEFT:
|
| 69 |
error = (FL -targetL + FR - targetR); |
| 70 |
break;
|
| 71 |
case LineFollowStrategy::MIDDLE:
|
| 72 |
// Assume that the smallest value means driving in the middle
|
| 73 |
targetL = targetR = !(targetL<targetR)?targetR:targetL; |
| 74 |
error = (FL -targetL + FR - targetR); |
| 75 |
break;
|
| 76 |
case LineFollowStrategy::TRANSITION_L_R: case LineFollowStrategy::TRANSITION_R_L: |
| 77 |
error = transitionError(FL, FR, targetL, targetR); |
| 78 |
break;
|
| 79 |
default:
|
| 80 |
break;
|
| 81 |
} |
| 82 |
// Debugging stuff ------
|
| 83 |
// if (global->enableRecord){
|
| 84 |
// global->senseRec[global->sensSamples].error = error;
|
| 85 |
// global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
| 86 |
// global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
| 87 |
// global->sensSamples++;
|
| 88 |
// }
|
| 89 |
// ----------------------
|
| 90 |
// Register white values
|
| 91 |
if (FL+FR > global->threshWhite){
|
| 92 |
whiteFlag = 1;
|
| 93 |
}else{
|
| 94 |
whiteFlag = 0;
|
| 95 |
} |
| 96 |
return error;
|
| 97 |
} |
| 98 |
|
| 99 |
|
| 100 |
|
| 101 |
|
| 102 |
/**
|
| 103 |
* Depending on the strategy different behaviours will be triggered.
|
| 104 |
* FUZZY - standard tracking of black area
|
| 105 |
* REVERSE - drive back
|
| 106 |
* @param: rpmSpeed motor speed
|
| 107 |
*/
|
| 108 |
int LineFollow::followLine(int (&rpmSpeed)[2]){ |
| 109 |
|
| 110 |
int correctionSpeed = 0; |
| 111 |
switch (this->strategy) |
| 112 |
{
|
| 113 |
case LineFollowStrategy::FUZZY:
|
| 114 |
for (int i = 0; i < 4; i++) { |
| 115 |
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
| 116 |
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
| 117 |
} |
| 118 |
lineFollowing(vcnl4020Proximity, rpmSpeed); |
| 119 |
break;
|
| 120 |
|
| 121 |
case LineFollowStrategy::REVERSE:
|
| 122 |
correctionSpeed = -getPidCorrectionSpeed(); |
| 123 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -1000000*global->forwardSpeed;
|
| 124 |
|
| 125 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -1000000*global->forwardSpeed;
|
| 126 |
|
| 127 |
break;
|
| 128 |
|
| 129 |
default:
|
| 130 |
correctionSpeed = getPidCorrectionSpeed(); |
| 131 |
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite);
|
| 132 |
|
| 133 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = 1000000*global->forwardSpeed + correctionSpeed;
|
| 134 |
|
| 135 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = 1000000*global->forwardSpeed - correctionSpeed;
|
| 136 |
break;
|
| 137 |
} |
| 138 |
return whiteFlag;
|
| 139 |
} |
| 140 |
|
| 141 |
|
| 142 |
/**
|
| 143 |
* Pid controller which returns a corrections speed.
|
| 144 |
*/
|
| 145 |
int LineFollow::getPidCorrectionSpeed(){
|
| 146 |
int32_t error = getError(); |
| 147 |
int32_t sloap = oldError - error ; |
| 148 |
// int correctionSpeed = (int) (global->K_p*error + Ki*accumHist - global->K_d*sloap);
|
| 149 |
int32_t correctionSpeed = (int32_t) (K_p*error + K_i*accumHist + K_d*sloap); |
| 150 |
oldError = error; |
| 151 |
accumHist += error; |
| 152 |
if (abs(error) > global->maxDist.error){
|
| 153 |
global->maxDist.error = error; |
| 154 |
} |
| 155 |
return correctionSpeed;
|
| 156 |
} |
| 157 |
|
| 158 |
|
| 159 |
void LineFollow::setStrategy(LineFollowStrategy strategy){
|
| 160 |
|
| 161 |
if(this->strategy == LineFollowStrategy::TRANSITION_R_L || this->strategy == LineFollowStrategy::TRANSITION_L_R){ |
| 162 |
return;
|
| 163 |
} |
| 164 |
|
| 165 |
switch(strategy){
|
| 166 |
case LineFollowStrategy::EDGE_LEFT:
|
| 167 |
if((this->strategy == LineFollowStrategy::EDGE_RIGHT) || (this->strategy == LineFollowStrategy::TRANSITION_R_L)){ |
| 168 |
this->strategy = LineFollowStrategy::TRANSITION_R_L;
|
| 169 |
}else{
|
| 170 |
// In case of fuzzy or reverse
|
| 171 |
this->strategy = strategy;
|
| 172 |
} |
| 173 |
break;
|
| 174 |
case LineFollowStrategy::EDGE_RIGHT:
|
| 175 |
if((this->strategy == LineFollowStrategy::EDGE_LEFT) || (this->strategy == LineFollowStrategy::TRANSITION_L_R)){ |
| 176 |
this->strategy = LineFollowStrategy::TRANSITION_L_R;
|
| 177 |
}else{
|
| 178 |
// In case of fuzzy or reverse
|
| 179 |
this->strategy = strategy;
|
| 180 |
} |
| 181 |
break;
|
| 182 |
default:
|
| 183 |
// From Fuzzy or Reverse state should work to transition automatically
|
| 184 |
this->strategy = strategy;
|
| 185 |
break;
|
| 186 |
} |
| 187 |
// this->strategy = strategy;
|
| 188 |
} |
| 189 |
|
| 190 |
void LineFollow::promptStrategyChange(LineFollowStrategy strategy){
|
| 191 |
this->strategy = strategy;
|
| 192 |
} |
| 193 |
|
| 194 |
LineFollowStrategy LineFollow::getStrategy(){
|
| 195 |
return this->strategy; |
| 196 |
} |
| 197 |
void LineFollow::setGains(float Kp, float Ki, float Kd){ |
| 198 |
this->K_p = Kp;
|
| 199 |
this->K_i = Ki;
|
| 200 |
this->K_d = Kd;
|
| 201 |
} |
| 202 |
|
| 203 |
|
| 204 |
|
| 205 |
|
| 206 |
|
| 207 |
// Legacy code, fuzzy following-----------------------------------------
|
| 208 |
// Line following by a fuzzy controler
|
| 209 |
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
| 210 |
// FUZZYFICATION
|
| 211 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
| 212 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
| 213 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
| 214 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
| 215 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
| 216 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
| 217 |
|
| 218 |
// INFERENCE RULE DEFINITION
|
| 219 |
// Get the member for each sensor
|
| 220 |
colorMember member[4];
|
| 221 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
| 222 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
| 223 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
| 224 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
| 225 |
|
| 226 |
// visualize sensors via LEDs
|
| 227 |
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
| 228 |
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
| 229 |
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
| 230 |
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
| 231 |
|
| 232 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
|
| 233 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
| 234 |
|
| 235 |
// DEFUZZYFICATION
|
| 236 |
defuzzyfication(member, rpmFuzzyCtrl); |
| 237 |
// defuzz(member, rpmFuzzyCtrl);
|
| 238 |
} |
| 239 |
|
| 240 |
|
| 241 |
Color LineFollow::memberToLed(colorMember member) {
|
| 242 |
switch (member) {
|
| 243 |
case BLACK:
|
| 244 |
return Color(Color::GREEN);
|
| 245 |
case GREY:
|
| 246 |
return Color(Color::YELLOW);
|
| 247 |
case WHITE:
|
| 248 |
return Color(Color::RED);
|
| 249 |
default:
|
| 250 |
return Color(Color::WHITE);
|
| 251 |
} |
| 252 |
} |
| 253 |
|
| 254 |
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
| 255 |
whiteFlag = 0;
|
| 256 |
// all sensors are equal
|
| 257 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
| 258 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
| 259 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
| 260 |
// something is wrong -> stop
|
| 261 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 262 |
// both front sensor detect a line
|
| 263 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
| 264 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 265 |
// straight
|
| 266 |
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
| 267 |
// exact one front sensor detects a line
|
| 268 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
| 269 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 270 |
// soft correction
|
| 271 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 272 |
// soft right
|
| 273 |
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
| 274 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
| 275 |
// hard right
|
| 276 |
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
| 277 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 278 |
// soft left
|
| 279 |
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
| 280 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
| 281 |
// hard left
|
| 282 |
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
| 283 |
} |
| 284 |
// both wheel sensors detect a line
|
| 285 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
| 286 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 287 |
// something is wrong -> stop
|
| 288 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 289 |
// exactly one wheel sensor detects a line
|
| 290 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
| 291 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 292 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
| 293 |
// turn left
|
| 294 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 295 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
| 296 |
// turn right
|
| 297 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 298 |
} |
| 299 |
// both front sensors may detect a line
|
| 300 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
| 301 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 302 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 303 |
// turn left
|
| 304 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 305 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
| 306 |
// turn right
|
| 307 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 308 |
} |
| 309 |
// exactly one front sensor may detect a line
|
| 310 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
| 311 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 312 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 313 |
// turn left
|
| 314 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 315 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 316 |
// turn right
|
| 317 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 318 |
} |
| 319 |
// both wheel sensors may detect a line
|
| 320 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
| 321 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 322 |
// something is wrong -> stop
|
| 323 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 324 |
// exactly one wheel sensor may detect a line
|
| 325 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
| 326 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 327 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 328 |
// turn left
|
| 329 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 330 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
| 331 |
// turn right
|
| 332 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 333 |
} |
| 334 |
// no sensor detects anything
|
| 335 |
} else {
|
| 336 |
// line is lost -> stop
|
| 337 |
whiteFlag = 1;
|
| 338 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 339 |
} |
| 340 |
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
| 341 |
return;
|
| 342 |
} |
| 343 |
|
| 344 |
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) { |
| 345 |
colorMember member; |
| 346 |
|
| 347 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
| 348 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
| 349 |
member = BLACK; |
| 350 |
else
|
| 351 |
member = WHITE; |
| 352 |
else
|
| 353 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
| 354 |
member = GREY; |
| 355 |
else
|
| 356 |
member = WHITE; |
| 357 |
|
| 358 |
return member;
|
| 359 |
} |
| 360 |
|
| 361 |
// Fuzzyfication of the sensor values
|
| 362 |
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
| 363 |
if (sensorValue < blackStartFalling ) {
|
| 364 |
// Only black value
|
| 365 |
fuzziedValue[BLACK] = 1.0f; |
| 366 |
fuzziedValue[GREY] = 0.0f; |
| 367 |
fuzziedValue[WHITE] = 0.0f; |
| 368 |
} else if (sensorValue > whiteOn ) { |
| 369 |
// Only white value
|
| 370 |
fuzziedValue[BLACK] = 0.0f; |
| 371 |
fuzziedValue[GREY] = 0.0f; |
| 372 |
fuzziedValue[WHITE] = 1.0f; |
| 373 |
} else if ( sensorValue < greyMax) { |
| 374 |
// Some greyisch value between black and grey
|
| 375 |
|
| 376 |
// Black is going down
|
| 377 |
if ( sensorValue > blackOff) {
|
| 378 |
fuzziedValue[BLACK] = 0.0f; |
| 379 |
} else {
|
| 380 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
| 381 |
} |
| 382 |
|
| 383 |
// Grey is going up
|
| 384 |
if ( sensorValue < greyStartRising) {
|
| 385 |
fuzziedValue[GREY] = 0.0f; |
| 386 |
} else {
|
| 387 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
| 388 |
} |
| 389 |
|
| 390 |
// White is absent
|
| 391 |
fuzziedValue[WHITE] = 0.0f; |
| 392 |
|
| 393 |
} else if ( sensorValue >= greyMax) { |
| 394 |
// Some greyisch value between grey white
|
| 395 |
|
| 396 |
// Black is absent
|
| 397 |
fuzziedValue[BLACK] = 0.0f; |
| 398 |
|
| 399 |
// Grey is going down
|
| 400 |
if ( sensorValue < greyOff) {
|
| 401 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
| 402 |
} else {
|
| 403 |
fuzziedValue[GREY] = 0.0f; |
| 404 |
} |
| 405 |
|
| 406 |
// White is going up
|
| 407 |
if ( sensorValue < whiteStartRising) {
|
| 408 |
fuzziedValue[WHITE] = 0.0f; |
| 409 |
} else {
|
| 410 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
| 411 |
} |
| 412 |
} |
| 413 |
} |
| 414 |
|
| 415 |
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
| 416 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
| 417 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
| 418 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
|
| 419 |
} |