Statistics
| Branch: | Tag: | Revision:

amiro-os / include / amiro / Constants.h @ 22b85da1

History | View | Annotate | Download (8.612 KB)

1 58fe0e0b Thomas Schöpping
#ifndef AMIRO_CONSTANTS_H_
2
#define AMIRO_CONSTANTS_H_
3
4
/*! \brief Constants regarding the AMiRo platform
5
 *
6
 *  This header contains constant variables
7
 *  regarding the AMiRo platform, which means that
8
 *  these values do not change during runtime.
9
 *  Constants are e.g. physical ones like seconds per minute
10
 *  or geometrical ones like the circumference of wheel.
11
 *  All physical constants (therefore all values with a
12
 *  physical unit) are implicitly in µ iff the variable
13
 *  is of type integer, unless it is explicitly named in
14
 *  the variable.
15
 *  All physical constants (therefore all values with a
16
 *  physical unit) are implicitly without prefix (e.g. µ)
17
 *  iff the variable is of type float, unless it is
18
 *  explicitly named in the variable. The SI prefix is
19
 *  used, iff the variable is of type float and therefor
20
 *  in SI units.
21
 */
22
23
#include <math.h>
24
#include <stdint.h>
25
26
/* CAN_* defines start */
27
28
/** \brief Controller Area Network specific defines
29
 *
30
 * These CAN_* defines are used in ControllerAreaNetworkRx.h
31
 * and ControllerAreaNetworkTx.h
32
 */
33
34
/* CAN_* defines end */
35
36
namespace amiro {
37
38
namespace CAN {
39
40 dd47d655 galberding
  // const uint32_t UPDATE_PERIOD        = US2ST(62500);  // 16 Hz
41
  // const uint32_t UPDATE_PERIOD        = US2ST(15625);  // 64 Hz
42
  const uint32_t UPDATE_PERIOD        = US2ST(10000);  // 100 Hz
43
  // const uint32_t UPDATE_PERIOD        = US2ST(8000);  // 125 Hz
44 58fe0e0b Thomas Schöpping
45
  const uint32_t PERIODIC_TIMER_ID         = 1;
46
  const uint32_t RECEIVED_ID               = 2;
47
48
  const uint32_t BOARD_ID_SHIFT            = 0x00u;
49
  const uint32_t BOARD_ID_MASK             = 0x07u;
50
  const uint32_t DEVICE_ID_SHIFT           = 0x03u;
51
  const uint32_t DEVICE_ID_MASK            = 0xFFu;
52
  const uint32_t INDEX_ID_SHIFT            = 0x03u;
53
  const uint32_t INDEX_ID_MASK             = 0x07u;
54
55
  const uint32_t DI_WHEEL_DRIVE_ID         = 1;
56
  const uint32_t POWER_MANAGEMENT_ID       = 2;
57
  const uint32_t LIGHT_RING_ID             = 3;
58
  const uint32_t COGNITION                 = 4;
59
60 b4885314 Thomas Schöpping
  const uint32_t MAGNETOMETER_X_ID         = 0x54;
61
  const uint32_t MAGNETOMETER_Y_ID         = 0x55;
62
  const uint32_t MAGNETOMETER_Z_ID         = 0x56;
63
  const uint32_t GYROSCOPE_ID              = 0x58;
64 58fe0e0b Thomas Schöpping
  const uint32_t PROXIMITY_FLOOR_ID        = 0x51;
65
  const uint32_t ODOMETRY_ID               = 0x50;
66
  const uint32_t BRIGHTNESS_ID             = 0x40;
67
  inline constexpr uint32_t COLOR_ID(uint32_t index)             {return 0x38 | ((index) & 0x7);}
68
  inline constexpr uint32_t PROXIMITY_RING_ID(uint32_t index)    {return 0x30 | ((index) & 0x7);}
69 25388c2f Georg Alberding
  const uint32_t SET_LINE_FOLLOW_SPEED     = 0x23;
70 58fe0e0b Thomas Schöpping
  const uint32_t SET_KINEMATIC_CONST_ID    = 0x22;
71
  const uint32_t TARGET_POSITION_ID        = 0x21;
72
  const uint32_t ACTUAL_SPEED_ID           = 0x20;
73
  const uint32_t SET_ODOMETRY_ID           = 0x12;
74
  const uint32_t TARGET_RPM_ID             = 0x11;
75
  const uint32_t TARGET_SPEED_ID           = 0x10;
76
  const uint32_t POWER_STATUS_ID           = 0x60;
77
  const uint32_t ROBOT_ID                  = 0x48;
78
  inline constexpr uint32_t SHELL_QUERY_ID(uint8_t index)        {return 0x70 | ((index) & 0x7);}
79
  inline constexpr uint32_t SHELL_REPLY_ID(uint8_t index)        {return 0x78 | ((index) & 0x7);}
80
  const uint32_t BROADCAST_SHUTDOWN        = 0x80u;
81
82
  const uint32_t CALIBRATE_PROXIMITY_FLOOR = 0x81u;
83
  const uint32_t CALIBRATE_PROXIMITY_RING  = 0x82u;
84
85
  const uint32_t SHUTDOWN_MAGIC            = 0xAA55u;
86
}
87
88
namespace constants {
89
90
  /** \brief Amount of seconds per minute */
91
  const int32_t secondsPerMinute = 60;
92
93
  /** \brief Amount of minutes per hour */
94
  const int32_t minutesPerHour = 60;
95
96
  /** \brief Amount of milliseconds per second */
97
  const int32_t millisecondsPerSecond = 1000;
98
99
  /* Several definitions of PI */
100
  constexpr float    PI   = float(M_PI);                /**< PI approximated with single precision floating point */
101
  constexpr uint32_t PIe9 = (M_PI * 1000000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e9 */
102
  constexpr uint32_t PIe6 = (M_PI * 1000000) + 0.5f;    /**< PI approximated with 32-bit integer and multiplied by factor 1e6 */
103
  constexpr uint16_t PIe3 = (M_PI * 1000) + 0.5f;       /**< PI approximated with 16-bit integer and multiplied by factor 1e3 */
104
  constexpr uint16_t PIe2 = (M_PI * 100) + 0.5f;        /**< PI approximated with 16-bit integer and multiplied by factor 1e2 */
105
  constexpr uint8_t  PIe1 = (M_PI * 10) + 0.5f;         /**< PI approximated with 8-bit integer and multiplied by factor 1e1 */
106
  constexpr uint8_t  PIe0 = (M_PI * 1) + 0.5f;          /**< PI approximated with 8-bit integer and multiplied by factor 1e0 */
107
108
namespace LightRing {
109
110
  /** \brief Index of the top LEDs
111
   *
112
   * Top view of the AMiRo top LEDs and their indices:
113
   *   _______
114
   *  / 7 F 0 \
115
   * |6       1|
116
   * |5       2|
117
   *  \_4_B_3_/
118
   */
119
  enum ledIndex : uint8_t {
120
    LED_BL = 4, LED_BACK_LEFT = 4, LED_SSW = 4, LED_SOUTH_SOUTHWEST = 4,
121
    LED_LB = 5, LED_LEFT_BACK = 5, LED_WSW = 5, LED_WEST_SOUTHWEST = 5,
122
    LED_LF = 6, LED_LEFT_FRONT = 6, LED_WNW = 6, LED_WEST_NORTHWEST = 6,
123
    LED_FL = 7, LED_FRONT_LEFT = 7, LED_NNW = 7, LED_NORTH_NORTHWEST = 7,
124
    LED_FR = 0, LED_FRONT_RIGHT = 0, LED_NNE = 0, LED_NORTH_NORTHEAST = 0,
125
    LED_RF = 1, LED_RIGHT_FRONT = 1, LED_ENE = 1, LED_EAST_NORTHEAST = 1,
126
    LED_RB = 2, LED_RIGHT_BACK = 2, LED_ESE = 2, LED_EAST_SOUTHEAST = 2,
127
    LED_BR = 3, LED_BACK_RIGHT = 3, LED_SSE = 3, LED_SOUTH_SOUTHEAST = 3
128
  };
129
}
130
131
namespace DiWheelDrive {
132
133
  /** \brief Distance between wheels in meter */
134
  const float wheelBaseDistanceSI = 0.069f;
135
136
  /** \brief Distance between wheels in micrometer */
137
  const int32_t wheelBaseDistance = wheelBaseDistanceSI * 1e6;
138
139
  /** \brief Wheel diameter in meter */
140
  const float wheelDiameterSI = 0.05571f;
141
142
  /** \brief Wheel diameter */
143
  const int32_t wheelDiameter = wheelDiameterSI * 1e6;
144
145
  /** \brief Wheel circumference in meter */
146
  const float wheelCircumferenceSI = M_PI * wheelDiameterSI;
147
148
  /** \brief Wheel circumference in micrometer */
149
  const int32_t wheelCircumference = wheelCircumferenceSI * 1e6;
150
151
  /** \brief Wheel error in meter (topview left:0, right:1) */
152
  const float wheelErrorSI[2] = {0.1, 0.1};
153
154
  /** \brief Wheel error in meter (topview left:0, right:1) */
155
  const int32_t wheelError[2] = {(int32_t) (wheelErrorSI[0] * 1e6), (int32_t) (wheelErrorSI[1] * 1e6)};
156
157
  /** \brief Motor increments per revolution
158
   *
159
   *  The increments are produced by 2 channels á 16
160
   *  pulses per revolution with respect to the rising
161
   *  and falling signal => 2*2*16 pulses/revolution.
162
   *  The gearbox is 22:1 => 2*2*16*22 pulses/revolution
163
   */
164
  const int32_t incrementsPerRevolution = 2 * 2 * 16 * 22;
165
166
  /** \brief Index of the proximity sensors
167
   *
168
   * Bottom view of the AMiRo sensors and their indices (F:Front, B:Back):
169
   *  _____
170
   * / 0F3 \
171
   * |1   2|
172
   * \__B__/
173
   */
174
  enum proximitySensorIdx : uint8_t {
175
    PROX_WL = 2, PROX_LW = 2, PROX_WHEEL_LEFT = 2, PROX_LEFT_WHEEL = 2,
176
    PROX_FL = 3, PROX_LF = 3, PROX_FRONT_LEFT = 3, PROX_LEFT_FRONT = 3,
177
    PROX_FR = 0, PROX_RF = 0, PROX_FRONT_RIGHT = 0, PROX_RIGHT_FRONT = 0,
178
    PROX_WR = 1, PROX_RW = 1, PROX_WHEEL_RIGHT = 1, PROX_RIGHT_WHEEL = 1,
179
  };
180
181
  /** \brief Index of the wheels
182
   *
183
   * Top view of the AMiRo wheels and their indices (F:Front, B:Back):
184
   *   ____
185
   * /| F |\
186
   * |0   1|
187
   * \|_B_|/
188
   */
189
  enum wheelIdx : uint8_t {
190
    WHEEL_L = 0, WHEEL_LEFT = 0, LEFT_WHEEL = 0,
191
    WHEEL_R = 1, WHEEL_RIGHT = 1, RIGHT_WHEEL = 1,
192
  };
193
}
194
195
namespace PowerManagement {
196
197
  /** \brief Index of the proximity sensors
198
   *
199
   * Top view of the AMiRo sensors and their indices:
200
   *   _______
201
   *  / 3 F 4 \
202
   * |2       5|
203
   * |1       6|
204
   *  \_0_B_7_/
205
   */
206
  enum proximitySensorIdx : uint8_t {
207
    PROX_BL = 0, PROX_BACK_LEFT = 0, PROX_SSW = 0, PROX_SOUTH_SOUTHWEST = 0,
208
    PROX_LB = 1, PROX_LEFT_BACK = 1, PROX_WSW = 1, PROX_WEST_SOUTHWEST = 1,
209
    PROX_LF = 2, PROX_LEFT_FRONT = 2, PROX_WNW = 2, PROX_WEST_NORTHWEST = 2,
210
    PROX_FL = 3, PROX_FRONT_LEFT = 3, PROX_NNW = 3, PROX_NORTH_NORTHWEST = 3,
211
    PROX_FR = 4, PROX_FRONT_RIGHT = 4, PROX_NNE = 4, PROX_NORTH_NORTHEAST = 4,
212
    PROX_RF = 5, PROX_RIGHT_FRONT = 5, PROX_ENE = 5, PROX_EAST_NORTHEAST = 5,
213
    PROX_RB = 6, PROX_RIGHT_BACK = 6, PROX_ESE = 6, PROX_EAST_SOUTHEAST = 6,
214
    PROX_BR = 7, PROX_BACK_RIGHT = 7, PROX_SSE = 7, PROX_SOUTH_SOUTHEAST = 7
215
  };
216
217
  /** \brief Index of the batteries.
218
   *
219
   * The port names are printed on the PCB.
220
   */
221
  enum batteryPortIdx : uint8_t {
222
    BAT_P7 = 0, BAT_A = 0,
223
    BAT_P8 = 1, BAT_B = 1
224
  };
225
226
  /** \brief Index of the power monitors.
227
   */
228
  enum powerMonitorIdx : uint8_t {
229
    INA_VDD = 0,
230
    INA_VIO18 = 1,
231
    INA_VIO33 = 2,
232
    INA_VIO42 = 3,
233
    INA_VIO50 = 4
234
  };
235
}
236
237
}
238
239
}
240
241
#endif /* AMIRO_CONSTANTS_H_ */