amiro-os / devices / DiWheelDrive / linefollow.cpp @ a47d64ad
History | View | Annotate | Download (15.976 KB)
1 |
// #include "global.hpp"
|
---|---|
2 |
#include "linefollow.hpp" |
3 |
#include <cmath> |
4 |
#include <limits> |
5 |
|
6 |
|
7 |
LineFollow::LineFollow(Global *global){ |
8 |
this->global = global;
|
9 |
} |
10 |
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){ |
11 |
this->global = global;
|
12 |
this-> strategy = strategy;
|
13 |
} |
14 |
|
15 |
|
16 |
int LineFollow::transitionError(int FL, int FR, int targetL, int targetR){ |
17 |
// global->robot.setLightColor(0, Color::RED);
|
18 |
// global->robot.setLightColor(7, Color::RED);
|
19 |
int error = 0; |
20 |
|
21 |
switch (this->strategy) |
22 |
{ |
23 |
case LineFollowStrategy::TRANSITION_R_L:
|
24 |
error = -(FL -targetL + FR - targetR + this->trans);
|
25 |
break;
|
26 |
case LineFollowStrategy::TRANSITION_L_R:
|
27 |
error = (FL -targetL + FR - targetR + this->trans);
|
28 |
break;
|
29 |
default:
|
30 |
break;
|
31 |
} |
32 |
this->trans += 400; |
33 |
if(FL+FR <= RAND_TRESH){
|
34 |
// global->robot.setLightColor(0, Color::GREEN);
|
35 |
// global->robot.setLightColor(7, Color::GREEN);
|
36 |
switch (this->strategy) |
37 |
{ |
38 |
case LineFollowStrategy::TRANSITION_R_L:
|
39 |
this->strategy = LineFollowStrategy::EDGE_LEFT;
|
40 |
break;
|
41 |
case LineFollowStrategy::TRANSITION_L_R:
|
42 |
this->strategy = LineFollowStrategy::EDGE_RIGHT;
|
43 |
break;
|
44 |
default:
|
45 |
break;
|
46 |
} |
47 |
this->trans = 0; |
48 |
} |
49 |
return error;
|
50 |
} |
51 |
|
52 |
/**
|
53 |
* Calculate the error from front proxi sensors and fixed threshold values for those sensors.
|
54 |
*/
|
55 |
int LineFollow::getError(){
|
56 |
// global->robot.setLightColor(3, Color::YELLOW);
|
57 |
// Get actual sensor data of both front sensors
|
58 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
59 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
60 |
// int targetL = global->linePID.threshProxyL;
|
61 |
// int targetR = global->linePID.threshProxyR;
|
62 |
int targetL = global->linePID.BThresh;
|
63 |
int targetR = global->linePID.WThresh;
|
64 |
int error = 0; |
65 |
switch (this->strategy) |
66 |
{ |
67 |
case LineFollowStrategy::EDGE_RIGHT:
|
68 |
error = -(FL -targetL + FR - targetR); |
69 |
break;
|
70 |
case LineFollowStrategy::EDGE_LEFT:
|
71 |
error = (FL -targetL + FR - targetR); |
72 |
break;
|
73 |
case LineFollowStrategy::MIDDLE:
|
74 |
// Assume that the smallest value means driving in the middle
|
75 |
// targetL = targetR = !(targetL<targetR)?targetR:targetL;
|
76 |
error = (FL -targetL + FR - targetL); |
77 |
break;
|
78 |
case LineFollowStrategy::TRANSITION_L_R: case LineFollowStrategy::TRANSITION_R_L: |
79 |
error = transitionError(FL, FR, targetL, targetR); |
80 |
break;
|
81 |
default:
|
82 |
break;
|
83 |
} |
84 |
// Debugging stuff ------
|
85 |
// if (global->enableRecord){
|
86 |
// global->senseRec[global->sensSamples].error = error;
|
87 |
// global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
88 |
// global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
89 |
// global->sensSamples++;
|
90 |
// }
|
91 |
// ----------------------
|
92 |
// Register white values
|
93 |
if (FL+FR > global->threshWhite){
|
94 |
whiteFlag = 1;
|
95 |
}else{
|
96 |
whiteFlag = 0;
|
97 |
} |
98 |
return error;
|
99 |
} |
100 |
|
101 |
|
102 |
|
103 |
|
104 |
/**
|
105 |
* Depending on the strategy different behaviours will be triggered.
|
106 |
* FUZZY - standard tracking of black area
|
107 |
* REVERSE - drive back
|
108 |
* @param: rpmSpeed motor speed
|
109 |
*/
|
110 |
int LineFollow::followLine(int (&rpmSpeed)[2]){ |
111 |
|
112 |
int correctionSpeed = 0; |
113 |
switch (this->strategy) |
114 |
{ |
115 |
case LineFollowStrategy::FUZZY:
|
116 |
for (int i = 0; i < 4; i++) { |
117 |
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
118 |
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
119 |
} |
120 |
lineFollowing(vcnl4020Proximity, rpmSpeed); |
121 |
break;
|
122 |
|
123 |
case LineFollowStrategy::REVERSE:
|
124 |
correctionSpeed = -getPidCorrectionSpeed(); |
125 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -1000000*global->forwardSpeed;
|
126 |
|
127 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -1000000*global->forwardSpeed;
|
128 |
|
129 |
break;
|
130 |
|
131 |
default:
|
132 |
correctionSpeed = getPidCorrectionSpeed(); |
133 |
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite);
|
134 |
|
135 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = 1000000*global->forwardSpeed + correctionSpeed;
|
136 |
|
137 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = 1000000*global->forwardSpeed - correctionSpeed;
|
138 |
break;
|
139 |
} |
140 |
|
141 |
// Limit Speed
|
142 |
if ((rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] > MAX_CORRECTED_SPEED) || (rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] > MAX_CORRECTED_SPEED)){
|
143 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] /= 2;
|
144 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] /= 2;
|
145 |
} |
146 |
|
147 |
|
148 |
return whiteFlag;
|
149 |
} |
150 |
|
151 |
|
152 |
/**
|
153 |
* Pid controller which returns a corrections speed.
|
154 |
*/
|
155 |
int LineFollow::getPidCorrectionSpeed(){
|
156 |
int32_t error = getError(); |
157 |
int32_t sloap = oldError - error ; |
158 |
// int correctionSpeed = (int) (global->K_p*error + Ki*accumHist - global->K_d*sloap);
|
159 |
int32_t correctionSpeed = (int32_t) (K_p*error + K_i*accumHist + K_d*sloap); |
160 |
oldError = error; |
161 |
|
162 |
// Overflow Protection
|
163 |
if ((error > 0) && (accumHist > std::numeric_limits<int32_t>::max() - error)){ |
164 |
// Overflow detected
|
165 |
accumHist = std::numeric_limits<int32_t>::max(); |
166 |
} else if ((error < 0) && (accumHist < std::numeric_limits<int32_t>::min() - error)) { |
167 |
// Underflow detected
|
168 |
accumHist = std::numeric_limits<int32_t>::min(); |
169 |
|
170 |
}else {
|
171 |
accumHist += error; |
172 |
} |
173 |
if (abs(error) > global->maxDist.error){
|
174 |
global->maxDist.error = error; |
175 |
} |
176 |
return correctionSpeed;
|
177 |
} |
178 |
|
179 |
|
180 |
void LineFollow::setStrategy(LineFollowStrategy strategy){
|
181 |
|
182 |
if(this->strategy == LineFollowStrategy::TRANSITION_R_L || this->strategy == LineFollowStrategy::TRANSITION_L_R){ |
183 |
return;
|
184 |
} |
185 |
|
186 |
switch(strategy){
|
187 |
case LineFollowStrategy::EDGE_LEFT:
|
188 |
if((this->strategy == LineFollowStrategy::EDGE_RIGHT) || (this->strategy == LineFollowStrategy::TRANSITION_R_L)){ |
189 |
this->strategy = LineFollowStrategy::TRANSITION_R_L;
|
190 |
}else{
|
191 |
// In case of fuzzy or reverse
|
192 |
this->strategy = strategy;
|
193 |
} |
194 |
break;
|
195 |
case LineFollowStrategy::EDGE_RIGHT:
|
196 |
if((this->strategy == LineFollowStrategy::EDGE_LEFT) || (this->strategy == LineFollowStrategy::TRANSITION_L_R)){ |
197 |
this->strategy = LineFollowStrategy::TRANSITION_L_R;
|
198 |
}else{
|
199 |
// In case of fuzzy or reverse
|
200 |
this->strategy = strategy;
|
201 |
} |
202 |
break;
|
203 |
default:
|
204 |
// From Fuzzy or Reverse state should work to transition automatically
|
205 |
this->strategy = strategy;
|
206 |
break;
|
207 |
} |
208 |
// this->strategy = strategy;
|
209 |
} |
210 |
|
211 |
void LineFollow::promptStrategyChange(LineFollowStrategy strategy){
|
212 |
this->strategy = strategy;
|
213 |
} |
214 |
|
215 |
LineFollowStrategy LineFollow::getStrategy(){ |
216 |
return this->strategy; |
217 |
} |
218 |
void LineFollow::setGains(float Kp, float Ki, float Kd){ |
219 |
this->K_p = Kp;
|
220 |
this->K_i = Ki;
|
221 |
this->K_d = Kd;
|
222 |
} |
223 |
|
224 |
|
225 |
|
226 |
|
227 |
|
228 |
// Legacy code, fuzzy following-----------------------------------------
|
229 |
// Line following by a fuzzy controler
|
230 |
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
231 |
// FUZZYFICATION
|
232 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
233 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
234 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
235 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
236 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
237 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
238 |
|
239 |
// INFERENCE RULE DEFINITION
|
240 |
// Get the member for each sensor
|
241 |
colorMember member[4];
|
242 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
243 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
244 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
245 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
246 |
|
247 |
// visualize sensors via LEDs
|
248 |
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
249 |
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
250 |
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
251 |
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
252 |
|
253 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
|
254 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
255 |
|
256 |
// DEFUZZYFICATION
|
257 |
defuzzyfication(member, rpmFuzzyCtrl); |
258 |
// defuzz(member, rpmFuzzyCtrl);
|
259 |
} |
260 |
|
261 |
|
262 |
Color LineFollow::memberToLed(colorMember member) { |
263 |
switch (member) {
|
264 |
case BLACK:
|
265 |
return Color(Color::GREEN);
|
266 |
case GREY:
|
267 |
return Color(Color::YELLOW);
|
268 |
case WHITE:
|
269 |
return Color(Color::RED);
|
270 |
default:
|
271 |
return Color(Color::WHITE);
|
272 |
} |
273 |
} |
274 |
|
275 |
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
276 |
whiteFlag = 0;
|
277 |
// all sensors are equal
|
278 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
279 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
280 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
281 |
// something is wrong -> stop
|
282 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
283 |
// both front sensor detect a line
|
284 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
285 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
286 |
// straight
|
287 |
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
288 |
// exact one front sensor detects a line
|
289 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
290 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
291 |
// soft correction
|
292 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
293 |
// soft right
|
294 |
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
295 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
296 |
// hard right
|
297 |
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
298 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
299 |
// soft left
|
300 |
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
301 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
302 |
// hard left
|
303 |
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
304 |
} |
305 |
// both wheel sensors detect a line
|
306 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
307 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
308 |
// something is wrong -> stop
|
309 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
310 |
// exactly one wheel sensor detects a line
|
311 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
312 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
313 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
314 |
// turn left
|
315 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
316 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
317 |
// turn right
|
318 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
319 |
} |
320 |
// both front sensors may detect a line
|
321 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
322 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
323 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
324 |
// turn left
|
325 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
326 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
327 |
// turn right
|
328 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
329 |
} |
330 |
// exactly one front sensor may detect a line
|
331 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
332 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
333 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
334 |
// turn left
|
335 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
336 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
337 |
// turn right
|
338 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
339 |
} |
340 |
// both wheel sensors may detect a line
|
341 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
342 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
343 |
// something is wrong -> stop
|
344 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
345 |
// exactly one wheel sensor may detect a line
|
346 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
347 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
348 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
349 |
// turn left
|
350 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
351 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
352 |
// turn right
|
353 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
354 |
} |
355 |
// no sensor detects anything
|
356 |
} else {
|
357 |
// line is lost -> stop
|
358 |
whiteFlag = 1;
|
359 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
360 |
} |
361 |
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
362 |
return;
|
363 |
} |
364 |
|
365 |
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) { |
366 |
colorMember member; |
367 |
|
368 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
369 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
370 |
member = BLACK; |
371 |
else
|
372 |
member = WHITE; |
373 |
else
|
374 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
375 |
member = GREY; |
376 |
else
|
377 |
member = WHITE; |
378 |
|
379 |
return member;
|
380 |
} |
381 |
|
382 |
// Fuzzyfication of the sensor values
|
383 |
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
384 |
if (sensorValue < blackStartFalling ) {
|
385 |
// Only black value
|
386 |
fuzziedValue[BLACK] = 1.0f; |
387 |
fuzziedValue[GREY] = 0.0f; |
388 |
fuzziedValue[WHITE] = 0.0f; |
389 |
} else if (sensorValue > whiteOn ) { |
390 |
// Only white value
|
391 |
fuzziedValue[BLACK] = 0.0f; |
392 |
fuzziedValue[GREY] = 0.0f; |
393 |
fuzziedValue[WHITE] = 1.0f; |
394 |
} else if ( sensorValue < greyMax) { |
395 |
// Some greyisch value between black and grey
|
396 |
|
397 |
// Black is going down
|
398 |
if ( sensorValue > blackOff) {
|
399 |
fuzziedValue[BLACK] = 0.0f; |
400 |
} else {
|
401 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
402 |
} |
403 |
|
404 |
// Grey is going up
|
405 |
if ( sensorValue < greyStartRising) {
|
406 |
fuzziedValue[GREY] = 0.0f; |
407 |
} else {
|
408 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
409 |
} |
410 |
|
411 |
// White is absent
|
412 |
fuzziedValue[WHITE] = 0.0f; |
413 |
|
414 |
} else if ( sensorValue >= greyMax) { |
415 |
// Some greyisch value between grey white
|
416 |
|
417 |
// Black is absent
|
418 |
fuzziedValue[BLACK] = 0.0f; |
419 |
|
420 |
// Grey is going down
|
421 |
if ( sensorValue < greyOff) {
|
422 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
423 |
} else {
|
424 |
fuzziedValue[GREY] = 0.0f; |
425 |
} |
426 |
|
427 |
// White is going up
|
428 |
if ( sensorValue < whiteStartRising) {
|
429 |
fuzziedValue[WHITE] = 0.0f; |
430 |
} else {
|
431 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
432 |
} |
433 |
} |
434 |
} |
435 |
|
436 |
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
437 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
438 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
439 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
|
440 |
} |