amiro-os / devices / DiWheelDrive / userthread.cpp @ f336542d
History | View | Annotate | Download (14.79 KB)
| 1 | 58fe0e0b | Thomas Schöpping | #include "userthread.hpp" |
|---|---|---|---|
| 2 | |||
| 3 | #include "global.hpp" |
||
| 4 | |||
| 5 | using namespace amiro; |
||
| 6 | |||
| 7 | extern Global global;
|
||
| 8 | |||
| 9 | // State machine states
|
||
| 10 | enum states : uint8_t {
|
||
| 11 | IDLE, |
||
| 12 | GO_RIGHT, |
||
| 13 | GO_STRAIGHT, |
||
| 14 | PARKING, |
||
| 15 | PARKING_RIGHT, |
||
| 16 | PARKING_LEFT, |
||
| 17 | GO_LEFT, |
||
| 18 | SPINNING_PARKING, |
||
| 19 | SPINNING |
||
| 20 | }; |
||
| 21 | |||
| 22 | // Policy
|
||
| 23 | states policy[] = {
|
||
| 24 | GO_STRAIGHT, |
||
| 25 | GO_RIGHT, |
||
| 26 | GO_RIGHT, |
||
| 27 | GO_STRAIGHT, |
||
| 28 | GO_RIGHT, |
||
| 29 | GO_STRAIGHT, |
||
| 30 | GO_RIGHT, |
||
| 31 | GO_STRAIGHT, |
||
| 32 | GO_STRAIGHT, |
||
| 33 | GO_RIGHT, |
||
| 34 | GO_STRAIGHT, |
||
| 35 | GO_RIGHT, |
||
| 36 | GO_STRAIGHT |
||
| 37 | }; |
||
| 38 | |||
| 39 | // The different classes (or members) of color discrimination
|
||
| 40 | // BLACK is the line itselfe
|
||
| 41 | // GREY is the boarder between the line and the surface
|
||
| 42 | // WHITE is the common surface
|
||
| 43 | enum colorMember : uint8_t {
|
||
| 44 | BLACK=0,
|
||
| 45 | GREY=1,
|
||
| 46 | WHITE=2
|
||
| 47 | }; |
||
| 48 | |||
| 49 | // a buffer for the z-value of the accelerometer
|
||
| 50 | int16_t accel_z; |
||
| 51 | bool running;
|
||
| 52 | |||
| 53 | // Get some information about the policy
|
||
| 54 | const int sizeOfPolicy = sizeof(policy) / sizeof(states); |
||
| 55 | int policyCounter = 0; // Do not change this, it points to the beginning of the policy |
||
| 56 | |||
| 57 | // Different speed settings (all values in "rounds per minute")
|
||
| 58 | const int rpmForward[2] = {25,25}; |
||
| 59 | const int rpmSoftLeft[2] = {15,25}; |
||
| 60 | const int rpmHardLeft[2] = {10,25}; |
||
| 61 | const int rpmSoftRight[2] = {rpmSoftLeft[1],rpmSoftLeft[0]}; |
||
| 62 | const int rpmHardRight[2] = {rpmHardLeft[1],rpmHardLeft[0]}; |
||
| 63 | const int rpmTurnLeft[2] = {-10, 10}; |
||
| 64 | const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]}; |
||
| 65 | const int rpmHalt[2] = {0, 0}; |
||
| 66 | |||
| 67 | // Definition of the fuzzyfication function
|
||
| 68 | // | Membership
|
||
| 69 | // 1|_B__ G __W__
|
||
| 70 | // | \ /\ /
|
||
| 71 | // | \/ \/
|
||
| 72 | // |_____/\__/\______ Sensor values
|
||
| 73 | // SEE MATLAB SCRIPT "fuzzyRule.m" for adjusting the values
|
||
| 74 | // All values are "raw sensor values"
|
||
| 75 | /* Use these values for white ground surface (e.g. paper) */
|
||
| 76 | |||
| 77 | const int blackStartFalling = 0x1000; // Where the black curve starts falling |
||
| 78 | const int blackOff = 0x1800; // Where no more black is detected |
||
| 79 | b4885314 | Thomas Schöpping | const int whiteStartRising = 0x2800; // Where the white curve starts rising |
| 80 | const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
||
| 81 | 58fe0e0b | Thomas Schöpping | const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
| 82 | const int greyStartRising = blackStartFalling; // Where grey starts rising |
||
| 83 | const int greyOff = whiteOn; // Where grey is completely off again |
||
| 84 | |||
| 85 | /* Use these values for gray ground surfaces */
|
||
| 86 | /*
|
||
| 87 | const int blackStartFalling = 0x1000; // Where the black curve starts falling
|
||
| 88 | const int blackOff = 0x2800; // Where no more black is detected
|
||
| 89 | const int whiteStartRising = 0x4000; // Where the white curve starts rising
|
||
| 90 | const int whiteOn = 0x5000; // Where the white curve starts rising
|
||
| 91 | const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum
|
||
| 92 | const int greyStartRising = blackStartFalling; // Where grey starts rising
|
||
| 93 | const int greyOff = whiteOn; // Where grey is completely off again
|
||
| 94 | */
|
||
| 95 | |||
| 96 | int vcnl4020AmbientLight[4] = {0}; |
||
| 97 | int vcnl4020Proximity[4] = {0}; |
||
| 98 | |||
| 99 | // Border for the discrimination between black and white
|
||
| 100 | const int discrBlackWhite = 16000; // border in "raw sensor values" |
||
| 101 | // Discrimination between black and white (returns BLACK or WHITE)
|
||
| 102 | // The border was calculated by a MAP-decider
|
||
| 103 | colorMember discrimination(int value) {
|
||
| 104 | if (value < discrBlackWhite)
|
||
| 105 | return BLACK;
|
||
| 106 | else
|
||
| 107 | return WHITE;
|
||
| 108 | } |
||
| 109 | |||
| 110 | // Copy the speed from the source to the target array
|
||
| 111 | void copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
||
| 112 | target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
||
| 113 | target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
||
| 114 | } |
||
| 115 | |||
| 116 | // Fuzzyfication of the sensor values
|
||
| 117 | void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
||
| 118 | if (sensorValue < blackStartFalling ) {
|
||
| 119 | // Only black value
|
||
| 120 | fuzziedValue[BLACK] = 1.0f; |
||
| 121 | fuzziedValue[GREY] = 0.0f; |
||
| 122 | fuzziedValue[WHITE] = 0.0f; |
||
| 123 | } else if (sensorValue > whiteOn ) { |
||
| 124 | // Only white value
|
||
| 125 | fuzziedValue[BLACK] = 0.0f; |
||
| 126 | fuzziedValue[GREY] = 0.0f; |
||
| 127 | fuzziedValue[WHITE] = 1.0f; |
||
| 128 | } else if ( sensorValue < greyMax) { |
||
| 129 | // Some greyisch value between black and grey
|
||
| 130 | |||
| 131 | // Black is going down
|
||
| 132 | if ( sensorValue > blackOff) {
|
||
| 133 | fuzziedValue[BLACK] = 0.0f; |
||
| 134 | } else {
|
||
| 135 | fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
||
| 136 | } |
||
| 137 | |||
| 138 | // Grey is going up
|
||
| 139 | if ( sensorValue < greyStartRising) {
|
||
| 140 | fuzziedValue[GREY] = 0.0f; |
||
| 141 | } else {
|
||
| 142 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
||
| 143 | } |
||
| 144 | |||
| 145 | // White is absent
|
||
| 146 | fuzziedValue[WHITE] = 0.0f; |
||
| 147 | |||
| 148 | } else if ( sensorValue >= greyMax) { |
||
| 149 | // Some greyisch value between grey white
|
||
| 150 | |||
| 151 | // Black is absent
|
||
| 152 | fuzziedValue[BLACK] = 0.0f; |
||
| 153 | |||
| 154 | // Grey is going down
|
||
| 155 | if ( sensorValue < greyOff) {
|
||
| 156 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
||
| 157 | } else {
|
||
| 158 | fuzziedValue[GREY] = 0.0f; |
||
| 159 | } |
||
| 160 | |||
| 161 | // White is going up
|
||
| 162 | if ( sensorValue < whiteStartRising) {
|
||
| 163 | fuzziedValue[WHITE] = 0.0f; |
||
| 164 | } else {
|
||
| 165 | fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
||
| 166 | } |
||
| 167 | } |
||
| 168 | } |
||
| 169 | |||
| 170 | // Return the color, which has the highest fuzzy value
|
||
| 171 | colorMember getMember(float (&fuzzyValue)[3]) { |
||
| 172 | colorMember member; |
||
| 173 | |||
| 174 | if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
||
| 175 | if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
||
| 176 | member = BLACK; |
||
| 177 | else
|
||
| 178 | member = WHITE; |
||
| 179 | else
|
||
| 180 | if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
||
| 181 | member = GREY; |
||
| 182 | else
|
||
| 183 | member = WHITE; |
||
| 184 | |||
| 185 | return member;
|
||
| 186 | } |
||
| 187 | |||
| 188 | // Get a crisp output for the steering commands
|
||
| 189 | void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
||
| 190 | |||
| 191 | b4885314 | Thomas Schöpping | // all sensors are equal
|
| 192 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
||
| 193 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
||
| 194 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
||
| 195 | // something is wrong -> stop
|
||
| 196 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
| 197 | // both front sensor detect a line
|
||
| 198 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
||
| 199 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
||
| 200 | 58fe0e0b | Thomas Schöpping | // straight
|
| 201 | copyRpmSpeed(rpmForward, rpmFuzzyCtrl); |
||
| 202 | b4885314 | Thomas Schöpping | // exact one front sensor detects a line
|
| 203 | 58fe0e0b | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
| 204 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
||
| 205 | // soft correction
|
||
| 206 | b4885314 | Thomas Schöpping | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 207 | 58fe0e0b | Thomas Schöpping | // soft right
|
| 208 | copyRpmSpeed(rpmSoftRight, rpmFuzzyCtrl); |
||
| 209 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
| 210 | 58fe0e0b | Thomas Schöpping | // hard right
|
| 211 | copyRpmSpeed(rpmHardRight, rpmFuzzyCtrl); |
||
| 212 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 213 | 58fe0e0b | Thomas Schöpping | // soft left
|
| 214 | copyRpmSpeed(rpmSoftLeft, rpmFuzzyCtrl); |
||
| 215 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
| 216 | 58fe0e0b | Thomas Schöpping | // hard left
|
| 217 | copyRpmSpeed(rpmHardLeft, rpmFuzzyCtrl); |
||
| 218 | b4885314 | Thomas Schöpping | } |
| 219 | // both wheel sensors detect a line
|
||
| 220 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
||
| 221 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
||
| 222 | // something is wrong -> stop
|
||
| 223 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
| 224 | // exactly one wheel sensor detects a line
|
||
| 225 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
||
| 226 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
||
| 227 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
||
| 228 | // turn left
|
||
| 229 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
| 230 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
| 231 | // turn right
|
||
| 232 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
| 233 | } |
||
| 234 | // both front sensors may detect a line
|
||
| 235 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
||
| 236 | 58fe0e0b | Thomas Schöpping | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 237 | b4885314 | Thomas Schöpping | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 238 | // turn left
|
||
| 239 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
| 240 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
| 241 | 58fe0e0b | Thomas Schöpping | // turn right
|
| 242 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
| 243 | b4885314 | Thomas Schöpping | } |
| 244 | // exactly one front sensor may detect a line
|
||
| 245 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
||
| 246 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
||
| 247 | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
||
| 248 | 58fe0e0b | Thomas Schöpping | // turn left
|
| 249 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
| 250 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 251 | // turn right
|
||
| 252 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
| 253 | } |
||
| 254 | // both wheel sensors may detect a line
|
||
| 255 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
||
| 256 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
||
| 257 | // something is wrong -> stop
|
||
| 258 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
| 259 | // exactly one wheel sensor may detect a line
|
||
| 260 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
||
| 261 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
||
| 262 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
||
| 263 | 58fe0e0b | Thomas Schöpping | // turn left
|
| 264 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
| 265 | b4885314 | Thomas Schöpping | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
| 266 | 58fe0e0b | Thomas Schöpping | // turn right
|
| 267 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
| 268 | b4885314 | Thomas Schöpping | } |
| 269 | // no sensor detects anything
|
||
| 270 | } else {
|
||
| 271 | // line is lost -> stop
|
||
| 272 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
| 273 | 58fe0e0b | Thomas Schöpping | } |
| 274 | |||
| 275 | return;
|
||
| 276 | } |
||
| 277 | |||
| 278 | Color memberToLed(colorMember member) {
|
||
| 279 | switch (member) {
|
||
| 280 | case BLACK:
|
||
| 281 | return Color(Color::GREEN);
|
||
| 282 | case GREY:
|
||
| 283 | return Color(Color::YELLOW);
|
||
| 284 | case WHITE:
|
||
| 285 | return Color(Color::RED);
|
||
| 286 | default:
|
||
| 287 | return Color(Color::WHITE);
|
||
| 288 | } |
||
| 289 | } |
||
| 290 | |||
| 291 | // Line following by a fuzzy controler
|
||
| 292 | void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
||
| 293 | // FUZZYFICATION
|
||
| 294 | // First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
||
| 295 | float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
||
| 296 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
||
| 297 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
||
| 298 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
||
| 299 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
||
| 300 | |||
| 301 | // INFERENCE RULE DEFINITION
|
||
| 302 | // Get the member for each sensor
|
||
| 303 | colorMember member[4];
|
||
| 304 | member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
||
| 305 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
||
| 306 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
||
| 307 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
||
| 308 | |||
| 309 | // visualize sensors via LEDs
|
||
| 310 | global.robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
||
| 311 | global.robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
||
| 312 | global.robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
||
| 313 | global.robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
||
| 314 | |||
| 315 | // chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftFuzzyMemberValues[BLACK], leftFuzzyMemberValues[GREY], leftFuzzyMemberValues[WHITE]);
|
||
| 316 | // chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
||
| 317 | |||
| 318 | // DEFUZZYFICATION
|
||
| 319 | defuzzyfication(member, rpmFuzzyCtrl); |
||
| 320 | } |
||
| 321 | |||
| 322 | // Set the speed by the array
|
||
| 323 | void setRpmSpeed(const int (&rpmSpeed)[2]) { |
||
| 324 | global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
||
| 325 | } |
||
| 326 | |||
| 327 | // Get the next policy rule
|
||
| 328 | states getNextPolicy() {
|
||
| 329 | // If the policy is over, start again
|
||
| 330 | if (policyCounter >= sizeOfPolicy)
|
||
| 331 | policyCounter = 3;
|
||
| 332 | |||
| 333 | return policy[policyCounter++];
|
||
| 334 | } |
||
| 335 | |||
| 336 | |||
| 337 | |||
| 338 | UserThread::UserThread() : |
||
| 339 | chibios_rt::BaseStaticThread<USER_THREAD_STACK_SIZE>() |
||
| 340 | {
|
||
| 341 | } |
||
| 342 | |||
| 343 | UserThread::~UserThread() |
||
| 344 | {
|
||
| 345 | } |
||
| 346 | |||
| 347 | msg_t |
||
| 348 | UserThread::main() |
||
| 349 | {
|
||
| 350 | /*
|
||
| 351 | * SETUP
|
||
| 352 | */
|
||
| 353 | int rpmFuzzyCtrl[2] = {0}; |
||
| 354 | for (uint8_t led = 0; led < 8; ++led) { |
||
| 355 | global.robot.setLightColor(led, Color(Color::BLACK)); |
||
| 356 | } |
||
| 357 | running = false;
|
||
| 358 | |||
| 359 | /*
|
||
| 360 | * LOOP
|
||
| 361 | */
|
||
| 362 | while (!this->shouldTerminate()) |
||
| 363 | {
|
||
| 364 | /*
|
||
| 365 | * read accelerometer z-value
|
||
| 366 | */
|
||
| 367 | accel_z = global.lis331dlh.getAccelerationForce(LIS331DLH::AXIS_Z); |
||
| 368 | |||
| 369 | /*
|
||
| 370 | * evaluate the accelerometer
|
||
| 371 | */
|
||
| 372 | if (accel_z < -900 /*-0.9g*/) { |
||
| 373 | if (running) {
|
||
| 374 | // stop the robot
|
||
| 375 | running = false;
|
||
| 376 | global.motorcontrol.setTargetRPM(0, 0); |
||
| 377 | } else {
|
||
| 378 | // start the robot
|
||
| 379 | running = true;
|
||
| 380 | } |
||
| 381 | // set the front LEDs to blue for one second
|
||
| 382 | global.robot.setLightColor(constants::LightRing::LED_SSW, Color(Color::BLACK)); |
||
| 383 | global.robot.setLightColor(constants::LightRing::LED_WSW, Color(Color::BLACK)); |
||
| 384 | global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::WHITE)); |
||
| 385 | global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::WHITE)); |
||
| 386 | global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::WHITE)); |
||
| 387 | global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::WHITE)); |
||
| 388 | global.robot.setLightColor(constants::LightRing::LED_ESE, Color(Color::BLACK)); |
||
| 389 | global.robot.setLightColor(constants::LightRing::LED_SSE, Color(Color::BLACK)); |
||
| 390 | this->sleep(MS2ST(1000)); |
||
| 391 | global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::BLACK)); |
||
| 392 | global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::BLACK)); |
||
| 393 | global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::BLACK)); |
||
| 394 | global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::BLACK)); |
||
| 395 | } |
||
| 396 | |||
| 397 | if (running) {
|
||
| 398 | // Read the proximity values
|
||
| 399 | for (int i = 0; i < 4; i++) { |
||
| 400 | vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
||
| 401 | vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
||
| 402 | } |
||
| 403 | |||
| 404 | // chprintf((BaseSequentialStream*) &SD1, "0x%04X 0x%04X 0x%04X 0x%04X\n",
|
||
| 405 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT],
|
||
| 406 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT],
|
||
| 407 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT],
|
||
| 408 | // vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT]);
|
||
| 409 | |||
| 410 | lineFollowing(vcnl4020Proximity, rpmFuzzyCtrl); |
||
| 411 | setRpmSpeed(rpmFuzzyCtrl); |
||
| 412 | } |
||
| 413 | |||
| 414 | 8dbafe16 | Thomas Schöpping | this->sleep(CAN::UPDATE_PERIOD);
|
| 415 | 58fe0e0b | Thomas Schöpping | } |
| 416 | |||
| 417 | return RDY_OK;
|
||
| 418 | } |